剪枝
将搜索过程中一些不必要的部分剔除掉,因为搜索过程构成了一棵树,剔除不必要的部分,就像是在树上将树枝剪掉,故名剪枝。
剪枝是回溯法中的一种重要优化手段,方法往往先写一个暴力搜索,然后找到某些特殊的数学关系,或者逻辑关系,通过它们的约束让搜索树尽可能浅而小,从而达到降低时间复杂度的目的。
一般来说剪枝的复杂度难以计算。
例题
蓝桥oj2942数字王国之军训排队
问题描述
数字王国开学了,它们也和我们人类一样有开学前的军训,现在一共有 n 名学生,每个学生有自己的一个名字 ai(数字王国里的名字就是一个正整数,注意学生们可能出现重名的情况),此时叛逆教官来看了之后感觉十分别扭,决定将学生重新分队。
排队规则为:将学生分成若干队,每队里面至少一个学生,且每队里面学生的名字不能出现倍数关系(注意名字相同也算是倍数关系)。
现在请你帮忙算算最少可以分成几队?
例:有 4 名学生 (2,3,4,4),最少可以分成 (2,3)、(4)、(4) 共 3 队。
输入格式
第一行包含一个正整数 n,表示学生数量。
第二行包含 n 个由空格隔开的整数,第 i 个整数表示第 i 个学生的名字 ai。
输出格式
输出共 1 行,包含一个整数,表示最少可以分成几队。
样例输入
4
2 3 4 4
样例输出
3
解1.不剪枝
#include <iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int N = 15;
int a[N],n;
vector<int>v[N];//v[i]表示第i组里面所有人的编号
//cnt表示队伍数量,dfs返回在cnt个队伍的情况下是否可以成功分组
bool dfs(int cnt, int dep)
{
if (dep == n + 1)
{
//说明每个人都成功分组了
//检查当前方案的合法性
for (int i = 1; i <= cnt; i++)//每个队伍枚举里面所有的二元组
{
for (int j = 0; j < v[i].size(); j++)
{
for (int k = j+1; k < v[i].size(); k++)
{
if (v[i][k] % v[i][j] == 0)return false;
}
}
}
return true;
}
//枚举每个人所属的队伍
for (int i = 1; i <= cnt; i++)
{
v[i].push_back(a[dep]);
if (dfs(cnt, dep + 1))return true;
//恢复现场
v[i].pop_back();
}
return false;
}
int main()
{
// 请在此输入您的代码
cin >> n;
for (int i = 1; i <= n; i++)cin >> a[i];
sort(a + 1, a + 1 + n);
//枚举n个
for (int i = 1; i <= n; i++)
{
if (dfs(i, 1))//i个队伍,从第一层开始搜索,看这种情况是否可以装的下(即成功分组)
{
cout << i << endl;
break;
}
}
return 0;
}
解2.剪枝(我没太懂,先放着)
#include <iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int N = 15;
int a[N],n;
vector<int>v[N];//v[i]表示第i组里面所有人的编号
//cnt表示队伍数量,dfs返回在cnt个队伍的情况下是否可以成功分组
bool dfs(int cnt, int dep)
{
if (dep == n + 1)
{
//说明每个人都成功分组了
//检查当前方案的合法性
for (int i = 1; i <= cnt; i++)//每个队伍枚举里面所有的二元组
{
for (int j = 0; j < v[i].size(); j++)
{
for (int k = j+1; k < v[i].size(); k++)
{
if (v[i][k] % v[i][j] == 0)return false;
}
}
}
return true;
}
//枚举每个人所属的队伍
for (int i = 1; i <= cnt; i++)
{
bool tag = true;
for(const auto &j:v[i])
if (a[dep] % j == 0)
{
tag = false;
break;
}
if (!tag)continue;
v[i].push_back(a[dep]);
if (dfs(cnt, dep + 1))return true;
//恢复现场
v[i].pop_back();
}
return false;
}
int main()
{
// 请在此输入您的代码
cin >> n;
for (int i = 1; i <= n; i++)cin >> a[i];
sort(a + 1, a + 1 + n);
//枚举n个
for (int i = 1; i <= n; i++)
{
if (dfs(i, 1))//i个队伍,从第一层开始搜索,看这种情况是否可以装的下(即成功分组)
{
cout << i << endl;
break;
}
}
return 0;
}