软件测试--零售商品销售预测与测试

说明一下,本篇代码是我上课老师讲课的代码,自己因为有所感悟,所以会使用它来总结这堂课所学到的东西。

(一)背景:知网查重论文样例–超市零售商品销售预测的重要性 | 学术不端论文查重检测,可参考这篇文章。

(二)数据准备:

(三)代码如下:

df=pd.read_csv('train_model.csv')
X=df.drop('Item_Outlet_Sales',axis=1).to_numpy()
y=df['Item_Outlet_Sales'].to_numpy()
#标准化
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(X)
X=scaler.transform(X)
#数据集切分
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
#建模
from sk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值