<数据结构>树和二叉树

目录

一、树的概念

1.1.树的相关概念

1.2.树的表示

1.3.树的应用(表示文件系统的目录结构)

二、二叉树的概念

2.1.概念

2.2.现实的二叉树

2.3.特殊的二叉树

2.4.二叉树的性质

2.5.二叉树的存储结构

2.5.1.顺序存储

2.5.2.链式存储

三、二叉树的链式结构的实现

3.1.二叉树的遍历

3.1.1.前序

3.1.2.中序

3.1.3.后序

 3.2.求二叉树的节点个数

3.3.求二叉树的叶子节点个数

3.4.求二叉树第K层的节点个数

3.5.查找值为x的节点

3.6.求二叉树的高度



一、树的概念


树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

(就是将现实的树倒过来,根在上,叶在下)

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.1.树的相关概念

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

1.2.树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法

孩子兄弟表示法:

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

1.3.树的应用(表示文件系统的目录结构)

二、二叉树的概念


2.1.概念

二叉树是一种特殊的树:如下图

  1. 节点的度不超过2
  2. 左右子树次序不能颠倒

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2.现实的二叉树

2.3.特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

2.4.二叉树的性质

  1. 1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多2^(h - 1)个结点.
  2. 2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数2^h - 1.
  3. 3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为 n2,则有 n0n2+1
  4. 4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log2(n + 1). (ps: log2(n + 1)是log以2 为底,n+1为对数)
  5. 5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点 

2. 若2i+1=n否则无左孩子

3. 若2i+2=n否则无右孩子

2.5.二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

2.5.1.顺序存储

1. 顺序存储 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.5.2.链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。

三、二叉树的链式结构的实现


首先先创建一颗链式的二叉树,其结构如下图:

// 创建一颗二叉树
typedef int BTDateType;
typedef struct BinaryTreeNode
{
	BTDateType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;


BTNode* TestTree()
{
	BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));
	BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));
	BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));
	BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));
	BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));
	BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));

	assert(n1 && n2 && n3 && n4 && n5 && n6);

	n1->data = 1;
	n2->data = 2;
	n3->data = 3;
	n4->data = 4;
	n5->data = 5;
	n6->data = 6;

	n1->left = n2;
	n1->right = n4;

	n2->left = n3;
	n2->right = NULL;

	n3->left = NULL;
	n3->right = NULL;

	n4->left = n5;
	n4->right = n6;

	n5->left = NULL;
	n5->right = NULL;

	n6->left = NULL;
	n6->right = NULL;

	return n1;
}

3.1.二叉树的遍历

即将一颗二叉树中的所有节点都访问一遍

3.1.1.前序

先访问根节点,再访问左子树,再访问右子树

void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	printf("%d ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
}

3.1.2.中序

先访问左子树,再访问根节点,再访问右子树

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	InOrder(root->left);
    printf("%d ", root->data);
	InOrder(root->right);
}

3.1.3.后序

先访问左子树,再访问右子树,在访问根节点

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

 3.2.求二叉树的节点个数

转化为求左子树和右子树再加根节点的小问题,递归求解

//节点的个数
int  BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

3.3.求二叉树的叶子节点个数

如果一个节点的左孩子和右孩子都为空,那么就是叶子节点


int leafLevel(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}

	return leafLevel(root->right) + leafLevel(root->left);
}

3.4.求二叉树第K层的节点个数

求解第K层的节点个数,如果访问到空树就返回空,向k层进行遍历。

求解从第一层开始计算的第k层节点,可以转化为求解从第二层开始计算的第k-1层节点,继续分下去就可以划分为相似的小问题。


int TreeKLevel(BTNode* root, int k)
{
	assert(k >= 1);

	if (root == NULL)
	{
		return 0;
	}

	if (k == 1)
	{
		return 1;
	}

	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}

3.5.查找值为x的节点

查找值为x的节点,我们可以转化为先查找左子树,再查找右子树的问题


BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}

	BTNode* ret1 = TreeFind(root->left, x);
	if (ret1) 
		return ret1;

	BTNode* ret2 = TreeFind(root->right, x);
	if (ret2) 
		return ret2;

	return NULL;
}

3.6.求二叉树的高度

转化为求解左子树和右子树的高度,比较后返回较大的值。


int TreeDeep(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	//深度
	int ret1 = TreeDeep(root->left) + 1;
	int ret2 = TreeDeep(root->right) + 1;

	int x = ret1 > ret2 ? ret1 : ret2;

	return x;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绅士·永

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值