目录
一、树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
(就是将现实的树倒过来,根在上,叶在下)
- 有一个特殊的结点,称为根结点,根节点没有前驱结点
- 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.1.树的相关概念
- 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
- 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
- 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
- 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
- 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
- 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
- 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
- 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
- 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
- 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
- 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
- 森林:由m(m>0)棵互不相交的树的集合称为森林;
1.2.树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
孩子兄弟表示法:
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
1.3.树的应用(表示文件系统的目录结构)
二、二叉树的概念
2.1.概念
二叉树是一种特殊的树:如下图
- 节点的度不超过2
- 左右子树次序不能颠倒
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.2.现实的二叉树
2.3.特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树
2.4.二叉树的性质
- 1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.
- 2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 .
- 3. 对任何一棵二叉树, 如果度为0其叶结点个数为, 度为2的分支结点个数为 ,则有 = +1
- 4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2 为底,n+1为对数)
- 5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1=n否则无左孩子
3. 若2i+2=n否则无右孩子
2.5.二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
2.5.1.顺序存储
1. 顺序存储 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2.5.2.链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。
三、二叉树的链式结构的实现
首先先创建一颗链式的二叉树,其结构如下图:
// 创建一颗二叉树
typedef int BTDateType;
typedef struct BinaryTreeNode
{
BTDateType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
BTNode* TestTree()
{
BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));
BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));
BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));
BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));
BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));
BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));
assert(n1 && n2 && n3 && n4 && n5 && n6);
n1->data = 1;
n2->data = 2;
n3->data = 3;
n4->data = 4;
n5->data = 5;
n6->data = 6;
n1->left = n2;
n1->right = n4;
n2->left = n3;
n2->right = NULL;
n3->left = NULL;
n3->right = NULL;
n4->left = n5;
n4->right = n6;
n5->left = NULL;
n5->right = NULL;
n6->left = NULL;
n6->right = NULL;
return n1;
}
3.1.二叉树的遍历
即将一颗二叉树中的所有节点都访问一遍
3.1.1.前序
先访问根节点,再访问左子树,再访问右子树
void PreOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
printf("%d ", root->data);
PreOrder(root->left);
PreOrder(root->right);
}
3.1.2.中序
先访问左子树,再访问根节点,再访问右子树
void InOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
3.1.3.后序
先访问左子树,再访问右子树,在访问根节点
void PostOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
PostOrder(root->left);
PostOrder(root->right);
printf("%d ", root->data);
}
3.2.求二叉树的节点个数
转化为求左子树和右子树再加根节点的小问题,递归求解
//节点的个数
int BinaryTreeSize(BTNode* root)
{
if (root == NULL)
{
return 0;
}
return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}
3.3.求二叉树的叶子节点个数
如果一个节点的左孩子和右孩子都为空,那么就是叶子节点
int leafLevel(BTNode* root)
{
if (root == NULL)
{
return 0;
}
if (root->left == NULL && root->right == NULL)
{
return 1;
}
return leafLevel(root->right) + leafLevel(root->left);
}
3.4.求二叉树第K层的节点个数
求解第K层的节点个数,如果访问到空树就返回空,向k层进行遍历。
求解从第一层开始计算的第k层节点,可以转化为求解从第二层开始计算的第k-1层节点,继续分下去就可以划分为相似的小问题。
int TreeKLevel(BTNode* root, int k)
{
assert(k >= 1);
if (root == NULL)
{
return 0;
}
if (k == 1)
{
return 1;
}
return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}
3.5.查找值为x的节点
查找值为x的节点,我们可以转化为先查找左子树,再查找右子树的问题
BTNode* TreeFind(BTNode* root, int x)
{
if (root == NULL)
{
return NULL;
}
if (root->data == x)
{
return root;
}
BTNode* ret1 = TreeFind(root->left, x);
if (ret1)
return ret1;
BTNode* ret2 = TreeFind(root->right, x);
if (ret2)
return ret2;
return NULL;
}
3.6.求二叉树的高度
转化为求解左子树和右子树的高度,比较后返回较大的值。
int TreeDeep(BTNode* root)
{
if (root == NULL)
{
return 0;
}
//深度
int ret1 = TreeDeep(root->left) + 1;
int ret2 = TreeDeep(root->right) + 1;
int x = ret1 > ret2 ? ret1 : ret2;
return x;
}