目录
一、堆的概念及结构
如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: = 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
即:逻辑是完全二叉树,物理是数组
其数组对应父子节点的下标满足:
leftchild = parent * 2 + 1;
rightchild = parent * 2 + 2;
parent = (child - 1) / 2
堆的特性:
结构性:用数组表示的完全二叉树
有序性:任一节点的值是其子树所有节点的最大值或最小值
二、堆的实现
2.1.堆向下调整算法
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整 成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
建堆可以建大堆和小堆,假设我们选择小堆,注意前提:左右子树必须是一个堆,才能调整。那么我们可以从根节点入手,根节点一定是堆,从根节点开始向下建堆。
// 建小堆的向下调整算法
void AdjustDown(int* a, int size, int parent)
{
assert(a);
int child = parent * 2 + 1;// 记录左孩子下标
while (child < size)
{
if (child + 1 < size && a[child + 1] < a[child])// 调整大小于符号来调整建大堆还是小堆,选择child中下的或者大的那个孩子
{
child += 1;
}
if (a[child] < a[parent])// 调整大小于符号来调整建大堆还是小堆,这里是小堆
{
Swap(&a[child], &a[parent]);
}
else
{
break;
}
parent = child;
child = parent * 2 + 1;
}
}
2.2.堆的创建
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算 法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的 子树开始调整,一直调整到根节点的树,就可以调整成堆
int a[] = {1,5,3,8,7,6};
倒数的第一个非叶子节点:(n - 1 - 1) / 2,n表示数组有多少元素
// 建堆 法1:时间:O(N*logN)
for (int i = 1; i < n; i++)
{
AdJustUp(a, i);// 用向上调整算法
}
// 建堆 法2:时间:O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);// 用向下调整算法
}
2.3.建堆时间复杂度
向下调整算法的建堆复杂度:O(N)
从最后一个非叶子节点开始调整
向上调整算法时间复杂度:O(N*logN)
2.4.堆的插入
在堆的末尾插入,对其使用向上调整算法,使其仍然是一个堆
void HeapPush(Heap* php, HPDataType x)
{
assert(php);
if (php->size == php->capacity)
{
// 扩容
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType)*(newcapacity));
if (tmp == NULL)
{
printf("realloc file");
exit(-1);
}
php->a = tmp;
php->capacity = newcapacity;
}
php->a[php->size] = x;
php->size++;
AdJustUp(php->a, php->size - 1);
}
2.5.堆的删除
如果直接删除会影响堆的结构,我们可以采用将堆顶和堆尾的数据交换,然后再删除堆尾的数据,再对堆顶的数据进行向下调整算法,使其仍然是一个堆
void HeapPop(Heap* php)
{
assert(php);
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
AdjustDown(php->a, php->size, 0);
}
三、堆的应用
3.1. 堆排序
堆排序:首先需要的条件是一个堆,我们就需要将其数列调整为一个堆。我们可以采用向上调整算法,或者向下调整算法。
堆排序升序采用的是大堆,选出最大的数据,再将堆顶和堆尾的数据交换,使size--, 再对堆顶的数据进行向下调整算法,直到size 减为0;
void AdJustUp(HPDataType* a, int pos)
{
int child = pos;
int parent = (child - 1) / 2;
while (child > 0)
{
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void AdjustDown(int* a, int size, int parent)
{
assert(a);
int child = parent * 2 + 1;
while (child < size)
{
if (child + 1 < size && a[child + 1] > a[child])
{
child += 1;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
}
else
{
break;
}
parent = child;
child = parent * 2 + 1;
}
}
void HeapSort(int* a, int n)
{
// 建堆 1:// 时间:O(N*logN)
//for (int i = 1; i < n; i++)// 向上调整算法
//{
// AdJustUp(a, i);
//}
// 建堆 2:时间:O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; i--)// 向下调整算法
{
AdjustDown(a, n, i);
}
for (int i = n - 1; i > 0 ; i--)
{
Swap(a, a + i);
AdjustDown(a, i, 0);
}
}
3.2. TOP-K问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1.堆排序找前k个元素
2. 用数据集合中前K个元素来建堆
- 前k个最大的元素,则建小堆
- 前k个最小的元素,则建大堆
3. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
void PrintTopK(int* a, int n, int k)
{
int* KminHeap = (int*)malloc(sizeof(int) * k);
assert(KminHeap);
// 1. 建堆--用a中前k个元素建小堆
for (int i = 0; i < k; i++)
{
KminHeap[i] = a[i];
}
for (int i = (k - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(KminHeap, k, i);
}
// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
for (int i = k; i < n; i++)
{
if (KminHeap[0] < a[i])
{
KminHeap[0] = a[i];
AdjustDown(KminHeap, k, 0);
}
}
for (int i = 0; i < k; i++)
{
printf("%d ", KminHeap[i]);
}
free(KminHeap);
}
void TestTopk()
{
int n = 10000;
int* a = (int*)malloc(sizeof(int) * n);
srand(time(0));
for (size_t i = 0; i < n; ++i)
{
a[i] = rand() % 1000000;
}
a[5] = 1000000 + 1;
a[1231] = 1000000 + 2;
a[531] = 1000000 + 3;
a[5121] = 1000000 + 4;
a[115] = 1000000 + 5;
a[2335] = 1000000 + 6;
a[9999] = 1000000 + 7;
a[76] = 1000000 + 8;
a[423] = 1000000 + 9;
a[3144] = 1000000 + 10;
PrintTopK(a, n, 10);
}