<数据结构>堆和堆排序

目录

一、堆的概念及结构

二、堆的实现

2.1.堆向下调整算法

2.2.堆的创建

2.3.建堆时间复杂度

2.4.堆的插入

2.5.堆的删除

三、堆的应用

3.1. 堆排序

3.2. TOP-K问题


一、堆的概念及结构


如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: = 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

即:逻辑是完全二叉树,物理是数组

其数组对应父子节点的下标满足:

leftchild = parent * 2 + 1;

rightchild = parent * 2 + 2;

parent = (child - 1) / 2

堆的特性:

结构性:用数组表示的完全二叉树

有序性:任一节点的值是其子树所有节点的最大值或最小值

二、堆的实现


2.1.堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整 成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

 建堆可以建大堆和小堆,假设我们选择小堆,注意前提:左右子树必须是一个堆,才能调整。那么我们可以从根节点入手,根节点一定是堆,从根节点开始向下建堆。

// 建小堆的向下调整算法
void AdjustDown(int* a, int size, int parent)
{
	assert(a);

	int child = parent * 2 + 1;// 记录左孩子下标

	while (child < size)
	{
		if (child + 1 < size && a[child + 1] < a[child])// 调整大小于符号来调整建大堆还是小堆,选择child中下的或者大的那个孩子
		{
			child += 1;
		}

		if (a[child] < a[parent])// 调整大小于符号来调整建大堆还是小堆,这里是小堆
		{
			Swap(&a[child], &a[parent]);
		}
		else
		{
			break;
		}

		parent = child;
		child = parent * 2 + 1;
	}
}

2.2.堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算 法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的 子树开始调整,一直调整到根节点的树,就可以调整成堆

int a[] = {1,5,3,8,7,6}; 

倒数的第一个非叶子节点:(n - 1 - 1) / 2,n表示数组有多少元素

	// 建堆 法1:时间:O(N*logN)
	for (int i = 1; i < n; i++)
	{
		AdJustUp(a, i);// 用向上调整算法
	}
	// 建堆 法2:时间:O(N)
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);// 用向下调整算法
	}

2.3.建堆时间复杂度

向下调整算法的建堆复杂度:O(N)

从最后一个非叶子节点开始调整

向上调整算法时间复杂度:O(N*logN)

2.4.堆的插入

在堆的末尾插入,对其使用向上调整算法,使其仍然是一个堆

void HeapPush(Heap* php, HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		// 扩容
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType)*(newcapacity));
		if (tmp == NULL)
		{
			printf("realloc file");
			exit(-1);
		}

		php->a = tmp;
		php->capacity = newcapacity;
	}

	php->a[php->size] = x;
	php->size++;
	AdJustUp(php->a, php->size - 1);
}

2.5.堆的删除

如果直接删除会影响堆的结构,我们可以采用将堆顶和堆尾的数据交换,然后再删除堆尾的数据,再对堆顶的数据进行向下调整算法,使其仍然是一个堆

 

void HeapPop(Heap* php)
{
	assert(php);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);
}

三、堆的应用


3.1. 堆排序

堆排序:首先需要的条件是一个堆,我们就需要将其数列调整为一个堆。我们可以采用向上调整算法,或者向下调整算法。

堆排序升序采用的是大堆,选出最大的数据,再将堆顶和堆尾的数据交换,使size--, 再对堆顶的数据进行向下调整算法,直到size 减为0;


void AdJustUp(HPDataType* a, int pos)
{
	int child = pos;
	int parent = (child - 1) / 2;

	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void AdjustDown(int* a, int size, int parent)
{
	assert(a);

	int child = parent * 2 + 1;

	while (child < size)
	{
		if (child + 1 < size && a[child + 1] > a[child])
		{
			child += 1;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
		}
		else
		{
			break;
		}

		parent = child;
		child = parent * 2 + 1;
	}
}

void HeapSort(int* a, int n)
{
	// 建堆 1:// 时间:O(N*logN)
	//for (int i = 1; i < n; i++)// 向上调整算法
	//{
	//	AdJustUp(a, i);
	//}
	// 建堆 2:时间:O(N)
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)// 向下调整算法
	{
		AdjustDown(a, n, i);
	}

	for (int i = n - 1; i > 0 ; i--)
	{
		Swap(a, a + i);
		AdjustDown(a, i, 0);
	}
}

3.2. TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1.堆排序找前k个元素

2. 用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆

3. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

void PrintTopK(int* a, int n, int k)
{
	int* KminHeap = (int*)malloc(sizeof(int) * k);
	assert(KminHeap);
	// 1. 建堆--用a中前k个元素建小堆 
	for (int i = 0; i < k; i++)
	{
		KminHeap[i] = a[i];
	}
	for (int i = (k - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(KminHeap, k, i);
	}
	// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	for (int i = k; i < n; i++)
	{
		if (KminHeap[0] < a[i])
		{
			KminHeap[0] = a[i];
			AdjustDown(KminHeap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d ", KminHeap[i]);
	}

	free(KminHeap);
}
void TestTopk()
{
	int n = 10000;
	int* a = (int*)malloc(sizeof(int) * n);
	srand(time(0));
	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 1000000;
	}
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[2335] = 1000000 + 6;
	a[9999] = 1000000 + 7;
	a[76] = 1000000 + 8;
	a[423] = 1000000 + 9;
	a[3144] = 1000000 + 10;
	PrintTopK(a, n, 10);
}

 

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绅士·永

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值