【BP数据预测】供需算法优化BP神经网络SDO-BP数据预测(含前后对比)【含Matlab源码 2032期】

本文介绍了供需优化(SDO)算法在BP神经网络中的应用,通过模拟经济学供需机制来提升算法的优化性能。文章详细阐述了SDO算法的初始化、商品的均衡数量与价格、供给与需求函数,并提供了Matlab源代码示例,展示了算法的运行结果。同时,对比了标准BP网络和SDO-BP网络的预测效果,分析了不同隐含层节点数对预测精度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⛄一、供需算法简介

供需优化(SDO)算法是Zhao等于2019年受经济学供需机制的启发而提出的一种新型元启发式优化算法。该算法在数学上模拟了消费者的需求关系和生产者的供给关系,通过将供求机制之稳定模式和非稳定模式引入到SDO算法中,利用两种模式在给定空间中进行局部搜索和全局搜索求解待优化问题。与传统群智能算法相比,SDO算法收敛速度快、寻优精度高、调节参数少,具有较好的探索和开发能力。

将SDO算法数学描述简述如下。
a. SDO算法初始化。假设有n个市场,每个市场有d种不同的商品,每种商品都有一定的数量和价格。市场中d种商品价格表示优化问题d维变量的一组候选解,同时将市场中d种商品数量作为一组可行解进行评估,如果可行解优于候选解,则可行解替换候选解。n个市场商品价格和商品数量分别用X、Y两个矩阵表示:
在这里插入图片描述
式中: xi和yi 分别为第i个商品价格和数量;xij和yij分别为第j个商品在第i个市场中的价格和数量。

利用适应度函数分别对每个市场中的商品价格和数量进行评估,对于n个市场,商品价格和商品数量的适应度分别为:
在这里插入图片描述
b. 商品均衡数量与均衡价格。假设每种商品的均衡价格x0和均衡数量y0在每次迭代过程中都是可变的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值