⛄一、人工蜂群算法优化支持向量机
1 SVM理论基础
SVM将回归问题转换为二次规划问题,摆脱了容易陷入局部最优的问题,很适合处理小样本回归问题[13]。
SVM利用非线性映射函数φ(x)将作为输入的样本x映射到高维空间H之中,并在H中基于结构风险最小化原则建立高维空间线性回归函数:
f(x)=wφ(x)+b (10)
其中,w为权值向量,且有w∈H;b为偏置,且有b∈R。针对回归拟合问题,引入ε线性不敏感损失函数,在正、负松弛度分别为ξ和ξ*的水平下进行无误差拟合,以回归函数的复杂度和拟合误差之后最小值为目标函数,则优化模型为:
其中,C为非负惩罚因子;S为样本个数。
为求解式(11),引入Lagrange函数,分别对式中各变量进行偏导数求解并置其为0,通过对偶原理将需要求解的问题转化为: