【SVM回归预测】差分进化改进人工蜂群算法优化支持向量机DEABC-SVM数据回归预测【含Matlab源码 2440期】

该博客介绍了使用差分进化改进的人工蜂群算法(DEABC)来优化支持向量机(SVM)参数,以提升数据回归预测的精度。SVM理论基础被简述,包括ε线性不敏感损失函数和优化模型。接着,阐述了ABC算法如何应用于SVM参数C和γ的优化,提供了部分Matlab源代码,并提及了2014a版本Matlab的使用。最后,列出了相关参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

⛄一、人工蜂群算法优化支持向量机

1 SVM理论基础
SVM将回归问题转换为二次规划问题,摆脱了容易陷入局部最优的问题,很适合处理小样本回归问题[13]。

SVM利用非线性映射函数φ(x)将作为输入的样本x映射到高维空间H之中,并在H中基于结构风险最小化原则建立高维空间线性回归函数:

f(x)=wφ(x)+b (10)

其中,w为权值向量,且有w∈H;b为偏置,且有b∈R。针对回归拟合问题,引入ε线性不敏感损失函数,在正、负松弛度分别为ξ和ξ*的水平下进行无误差拟合,以回归函数的复杂度和拟合误差之后最小值为目标函数,则优化模型为:
在这里插入图片描述
其中,C为非负惩罚因子;S为样本个数。

为求解式(11),引入Lagrange函数,分别对式中各变量进行偏导数求解并置其为0,通过对偶原理将需要求解的问题转化为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值