
⛄一、约束最小二乘方滤波简介
1 维纳滤波运动模糊图像复原
维纳滤波(Wiener Filter)是一种用于图像复原的经典滤波方法,可以用于降低模糊图像中的噪声并恢复丢失的细节。以下是使用维纳滤波进行模糊图像复原的基本步骤:
确定模糊参数:根据已知的模糊过程或模型,确定模糊参数,如点扩散函数(PSF),即描述模糊过程对图像的影响。
估计功率谱密度:通过对模糊图像的频域表示(傅里叶变换)计算功率谱密度(PSD)。PSD反映了图像中各频率成分的能量分布。
建立复原滤波器:根据模糊过程和噪声特性,构建一个复原滤波器。维纳滤波器在频率域中定义为逆滤波器与噪声增益函数之比。它考虑到了模糊过程的特性以及图像中的噪声。
频域滤波:将待复原的模糊图像转换到频域,并与复原滤波器进行卷积操作。这一步会降低噪声的影响并恢。
反傅里叶变换:将经过频率域滤里叶变换,得到恢复后的空域图像。
2.最小二乘运动模糊图像复原
最小二乘图像复原是一种基于最小二乘法的图像恢复方法,旨在通过优化问题来重建清晰图像。以下是使用最小二乘图像复原的基本步骤:
建立退化模型:根据已知的图像退化过程或退化模型,确定相应的数学描述。例如,在模糊和噪声恢复中,通常使用卷积操作来表示模糊过程,并添加噪声模型。
确定目标函数:
本文介绍了维纳滤波和最小二乘法在图像复原中的应用,详细阐述了这两种方法的基本原理和实现步骤。通过Matlab源码展示了运动模糊图像的复原过程,包括不同信噪比下的维纳滤波效果以及不同重复次数的Richardson-Lucy算法结果。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



