【图像修复】TV模型图像修复【含Matlab源码 3452期】

本文介绍了一种基于深度信息的图像修复算法,通过平面参数马尔可夫模型提取深度信息,使用TV模型进行修复,并通过MATLAB实现。该算法提高了图像修复的准确性和鲁棒性,适用于照片、名贵字画等修复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⛄一、TV模型图像修复简介

0 引言
图像修复是指对待修复图像中缺损的部分,利用已有的图像信息对缺损区域进行修复,是计算机图像和视觉中的研究热点之一。在图像修复领域,通常采用的是基于块的纹理合成的修复方法。基于块的纹理合成的修复又可以分为基于图像分解和基于样本块的图像修复技术两种。

基于图像分解的修复技术是将图像分解为结构和纹理两部分,基于样本分别进行结构修补和纹理合成,其中用图像修补技术来修补结构部分,用纹理合成方法来填充纹理部分,最终将两部分的修复结果叠加起来。该方法适合于结构比较清晰且易于提取的情况,因此具有很大的局限性。

基于样本块的图像修复技术是通过纹理合成来填充缺损区域,其主要思想是通过选取最优匹配的像素块,根据图像的纹理信息,以受损边界的某个像素点为中心在未受损区域的样本块中寻找相似的纹理块来进行填充缺失部分。Criminis等[1]通过计算受损边界的块中已知像素所占的比例、梯度和法线方向来定义待修复区块的优先级,通过计算区块之间的欧氏距离得到最佳匹配的像素块,然后将其复制到受损区域中。Criminisi算法通过对样本块的直接复制来填充缺损区域,修复效果往往存在明显的结构上的不连续性和不完整性。

考虑到在人类的视觉感知系统中,深度信息能够有效反映出物体的纹理特征和梯度变化,以及物体的完整性和模糊程度。Luo等[2]提出基于深度图像的图像修复算法,该方法通过基于深度图像绘制(D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值