⛄一、TV模型图像修复简介
0 引言
图像修复是指对待修复图像中缺损的部分,利用已有的图像信息对缺损区域进行修复,是计算机图像和视觉中的研究热点之一。在图像修复领域,通常采用的是基于块的纹理合成的修复方法。基于块的纹理合成的修复又可以分为基于图像分解和基于样本块的图像修复技术两种。
基于图像分解的修复技术是将图像分解为结构和纹理两部分,基于样本分别进行结构修补和纹理合成,其中用图像修补技术来修补结构部分,用纹理合成方法来填充纹理部分,最终将两部分的修复结果叠加起来。该方法适合于结构比较清晰且易于提取的情况,因此具有很大的局限性。
基于样本块的图像修复技术是通过纹理合成来填充缺损区域,其主要思想是通过选取最优匹配的像素块,根据图像的纹理信息,以受损边界的某个像素点为中心在未受损区域的样本块中寻找相似的纹理块来进行填充缺失部分。Criminis等[1]通过计算受损边界的块中已知像素所占的比例、梯度和法线方向来定义待修复区块的优先级,通过计算区块之间的欧氏距离得到最佳匹配的像素块,然后将其复制到受损区域中。Criminisi算法通过对样本块的直接复制来填充缺损区域,修复效果往往存在明显的结构上的不连续性和不完整性。
考虑到在人类的视觉感知系统中,深度信息能够有效反映出物体的纹理特征和梯度变化,以及物体的完整性和模糊程度。Luo等[2]提出基于深度图像的图像修复算法,该方法通过基于深度图像绘制(D