💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式
🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(高阶版)
②付费专栏Matlab信号处理(进阶版)
③付费专栏Matlab信号处理(初级版)
⛳️关注CSDN Matlab领域,更多资源等你来!!
⛄一、扩频通信系统简介
** 扩频通信的基本原理**
1 扩频通信
所谓扩展频谱通信,可简单表述如下:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”。
扩频通信的基本特点,是传输信号所占用的频带宽度(W)远大于原始信息本身实际所需的最小带宽(B),其比值称为处理增益(Gp)。总之,我们用扩展频谱的宽带信号来传输信息,就是为了提高通信的抗干扰能力,即在强干扰条件下保证可靠安全地通信。这就是扩展频谱通信的基本思想和理论依据。
扩频通信的性能。扩频通信的可行性是从信息论和抗干扰理论的基本公式中引伸而来的。信息论中关于信息容量的香农( Shannon) 公式为:C=Blog2 ( 1+ SN)其中: C 为信道容量( 即极限传输速率) , B 为信号频带宽度, S 为信号功率, N 为噪声功率。Shannon 公式说明, 在给定的传输速率不变的条件下, 频带宽度和信噪比P 可以互换, 即可以通过增加频带宽度, 在信噪比较低的情况下传输信息。扩展频谱以换取信噪比要求的降低, 正是扩频通信的重要特点, 并由此为扩频通信的应用奠定了基础。扩频通信的一个重要参数是扩频增益, 反映了系统抗干扰能力的强弱, 是对信噪比改善程度的度量, 定义为接收机相关器输出信噪比和输入信噪比之比, 即
2 直接序列扩频
直接序列扩频就是直接用具有高码率的扩频码序列在发送端去扩展信号的频谱。而在接收端, 用相同的扩频码序列去进行解扩, 将展宽的扩频信号还原成原始的信息。直扩通信系统原理如图1 所示。
5 高斯加性白噪声(AWNG)
白噪声是指功率谱密度在整个频域内均匀分布的噪声。即其功率谱密度:
⛄二、部分源代码
% clear all;clc;close all;
%% 参数配置
Bit_n=10000;%码元数量
L=160;%扩频增益
fs=96000;%采样频率
nSamp=1/fs;%采样间隔
Bit=single(sign(randn(1,Bit_n)));%待发送码元
Nsample=Bit_nL2;%采样点数量
M=L*2; %扩频增益
%% 参数配置显示及效验
Vb=fs/L;
fprintf(‘\r’);
fprintf(‘通信参数\r’);
fprintf(‘--------------\r’);
fprintf(‘采样频率: %g Hz\n’,fs);
fprintf(‘通信速率: %g bit/s\n’,Vb);
fprintf(‘扩频因子: %g \n’,L);
fprintf(‘载频过采样: %g \n’,fs/L);
%% 混沌信号生成
u=logistic_map(Nsample);
%% 调制
Modulated_signal=Chaotic_modulate(Bit_n,L,Bit,u);
%% 多径
flag_rece=Modulated_signal;
% h=[0.6,zeros(1,400),0.3,zeros(1,500),0.1];
% flag_rece=conv(Modulate_signal,h);
% flag_rece=flag_rece(1:length(Modulate_signal));
%% 解调
Eb_N0=0:1:20;
for i=1:length(Eb_N0)
Received_signal=Fun_EBN0(flag_rece,Bit_n,Eb_N0(i));%% 噪声
Recover_bit=Chaotic_demodulate(Bit_n,L,Received_signal);%解码
%误码
BER(i)=length(find((Bit-Recover_bit)~=0))/Bit_n;
%进度条
wa=waitbar(i/length(Eb_N0));
end
close(wa);%关闭进度条
%% 理论误码率
BER_DCSK=Fun_BER_DCSK_theoretical(L,Eb_N0);
%% plot
semilogy(Eb_N0,BER,‘yo-’,‘LineWidth’,2)
% hold on
% semilogy(Eb_N0,BER_DCSK,‘bs:’,‘LineWidth’,2)
grid on
axis([0 Eb_N0(end) 10^-4 10^0])
legend(‘DCSK’)
% legend(‘Simulation’,‘Therotical’)
% fre_spec(u,fs);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除