牛顿迭代法求方程的根

牛顿迭代法(牛顿-拉弗森方法)

五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。

简而言之就是说:通过反复求切线的斜率无限逼近求得f(x)的解,也就是方程的根。 

 

 

重点:牛顿-拉弗森方法是否总是收敛(总是可以求得足够近似的根)?

牛顿-拉弗森方法源于直觉,这种直觉本身有一定程度的合理性。

我们来看看收敛的充分条件:若f(x)二阶可导,那么在待求零点x周围存在一个区域,只要起始点x0位于这个邻域内,那么牛顿拉弗森方法必定收敛,也就是说,在这个区域内,用切线代替曲线这个直觉是合理的。但是,因为我们不知道根点到底在哪里,所以起始点x0选择就不一定在这个区域内,那么这个直觉就不靠谱了(就可能求不出近似解了!)

如果起始点选择错误会有以下情况:(在上方的网站中有详细的解答)

1、驻点(切线没有根,毫无意义)

2、越来越远离的不收敛

3、循环震荡不收敛

此外,当一个函数有多个根,而选择的起始点只能求到附近的根,所以不能求出所有的根!

总结:应用牛顿-拉弗森方法,要注意以下问题:

  • 函数在整个定义域内最好是二阶可导的
  • 起始点对求根计算影响重大,可以增加一些别的判断手段进行试错(牛顿迭代法的一大缺陷!)

例子:求方程F1(在下方有定义)在x0附近的根 //给出了x0,也就是起始点

//牛顿迭代法求解方程组的根!

#include<iostream>
using namespace std;
double F1(double x)     //F1为原函数,注意变量x的值和函数返回值都是double型的,否则在后面的循环误差会很大
{
	double result;
	result = pow(x, 3) + 2 * pow(x, 2) + 10 * x - 20;
	return result;
}
double F2(double x)  //F2为F1导函数,注意变量x的值和函数返回值都是double型的,否则在后面的循环误差会很大
{
    double result;
	result = 3 * pow(x, 2) + 4 * pow(x, 1) + 10;
	return result;

}
int main()
{
	double epson, X0, Xn,X;
	cout << "任务:用牛顿迭代法求方程的在0附近的根,请输入精度x的值"; cin >> epson;
	cout << "请输入初始化的迭代值X0="; cin >> X0;
	do
	{
		X = X0;
		X0 = X - F1(X) / F2(X);
		cout << 1;
		
	} while (fabs(X0 - X) > epson);

	cout << "近似解为" << X0;
	return 0;
}

  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值