- 博客(124)
- 收藏
- 关注
原创 笔记 | 机器学习-梯度下降
代码模拟梯度下降import matplotlib.pyplot as pltimport numpy as np构建函数和导函数构建方程$ f(x) = (x - 3.5)^2 - 4.5x + 10 $# 求导数# yo 为导数# y = c (c为常量) | yo = 0# y = x ** n | y0 = (n * x) ** (n-1)# 构建方程f = lambda x: (x - 3.5) ** 2 - 4.5 * x + 40# 导函数-根据上面公式# 任何一
2022-02-26 11:32:48
1011
原创 笔记 | 机器学习-线性回归-波士顿房价加载与查看
#%% md线性回归-房价预测#%%房价的高低-一切因素: 可能面积、位置、房间布局…import numpy as npfrom sklearn import datasets # 数据集from sklearn.linear_model import LinearRegression # 模型#%% md#### 加载数据、数据查看#%%bostonItems = datasets.load_boston() # 波士顿房价 (类似字典类型)# target 目标值 房价 24万美
2022-02-24 17:18:45
1403
原创 笔记 | numpy-11.数组操作
#%%# 用于处理数组,大概可分为以下几类"""修改数组形状翻转数组修改数组维度连接数组分割数组数组元素的添加与删除"""#%% md## 修改数组形状#%%"""函数 描述reshape 不改变数据的条件下修改形状flat 数组元素迭代器flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组ravel 返回展开数组"""#%% md### numpy.reshapenumpy.reshape 函数可以在不改变数据的条件下修改形状#%%# nump
2022-02-12 19:54:07
436
原创 笔记 | numpy-10.迭代数组
#%% mdNumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。迭代器最基本的任务的可以完成对数组元素的访问。接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代b#%%import numpy as npa = np.arange(6).reshape(2, 3) # 2r3ca#%%# 通过迭代输出# 以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做
2022-02-12 19:53:13
257
原创 笔记 | numpy-09.广播(Broadcast)
#%%# 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行# 如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同#%%import numpy as npa = np.array([1, 2, 3, 4]) # 4r1ca#%%b = np.array([10, 20, 30, 40])
2022-02-12 19:52:08
119
原创 笔记 | numpy-08.高级索引
#%%# NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引#%% md## 整数数组索引#%%import numpy as npx = np.array([ [1, 2], [3, 4], [5, 6]])y = x[[0, 1, 2], [0, 1, 0]] # 分别取 x的 x[0,0] = 1 x[1,1] = 4 x[2,0] = 5y#%%# 以下实例获取了
2022-02-12 19:51:14
849
原创 笔记 | numpy-07.切片和索引
#%%import numpy as npa = np.arange(10) # 0~10, 不含10a#%%s = slice(2, 8, 2) # 构造切片对象print(s, type(s)) # slice(2, 7, 2) <class 'slice'>a[s] # 从索引2开始 索引8结束(不含8) 步长2#%%# 可以通过冒号分隔切片参数 start:stop:step 来进行切片操作a[2:8:2] # 从索引2开始 索引8结束(不含8) 步长2#%%
2022-02-12 19:50:25
500
原创 笔记 | numpy-06.从数值范围创建数组
#%% md## numpy.arangenumpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象#%%# numpy.arange(start, stop, step, dtype)"""参数 描述start 起始值,默认为0stop 终止值(不包含)step 步长,默认为1dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。"""#%%import numpy as npx = np.arange(5) # 0~5 (不
2022-02-11 21:07:16
265
原创 笔记 | numpy-05.从已有的数组创建数组
#%% md## numpy.asarraynumpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个#%%# numpy.asarray(a, dtype = None, order = None)"""参数 描述a 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组dtype 数据类型,可选order 可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算
2022-02-11 21:06:16
106
原创 笔记 | numpy-04.创建数组
#%% md## numpy.emptynumpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组#%%# numpy.empty(shape, dtype = float, order = 'C')"""参数 描述shape 数组形状dtype 数据类型,可选order 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。"""#%%import numpy as npx = np.empty((3,
2022-02-11 21:05:04
674
原创 笔记 | numpy-03.数组属性
#%%"""NumPy 数组的维数称为秩 (rank), 秩就是轴的数量, 即数组的维度, 一维(秩:1),二维(秩:2), 以此类推..NumPy 中 每一个线性的数组称为是一个轴(axis), 也就是维度(dimensions) 二维数组 = 两个一维数组, 其中 第一个一维数组中每个元素又是一个一维数组 所以一维数组就是 NumPy 中的轴(axis), 第一个轴相当于是底层数组, 第二个轴是底层数组里的数组. 而轴的数量(秩), 就是数组的维数很多时候可以声明 axis.
2022-02-11 21:01:39
244
原创 笔记 | numpy-02.数据类型
#%%# 常用基本类型"""名称 描述bool_ 布尔型数据类型(True 或者 False)int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)intc 与 C 的 int 类型一样,一般是 int32 或 int 64intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)int8 字节(-128 to 127)int16 整数(-32768 to 32767)int32 整数(-2147483
2022-02-11 21:00:25
443
原创 笔记 | numpy-01.ndarray-对象
#%%# 创建一个 ndarray# numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)"""名称 描述object 数组或嵌套的数列dtype 数组元素的数据类型,可选copy 对象是否需要复制,可选order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)subok 默认返回一个与基类类型一致的数组ndmin 指定生成数组的最小维度"""#%%
2022-02-11 20:58:12
907
原创 笔记 | 数据分析综合项目实战
#%% md## 类库导入#%%import pandas as pdimport numpy as npimport matplotlib.pyplot as pltnp.array((pd, np, plt))#%% md## 数据加载#%%data = pd.read_csv(r'I:\AIoT智能物联网工程师\AIoT智能物联网\Python数据分析\综合项目实战\课程资料\数据分析综合项目实战\job.csv') # 读取数据print(data.shape) # 数据结
2022-02-10 16:28:21
763
原创 plt | 双轴布局
#%%# CY3761 | 2022-01-20 13:33#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport types# 设置全局参数plt.rcParams['font.family'] = plt.rcPara
2022-01-20 22:42:38
540
2
原创 plt | 子视图
#%%# CY3761 | 2022-01-18 11:50#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport types# 设置全局参数plt.rcParams['font.family'] = plt.rcPara
2022-01-18 17:26:14
228
1
原创 pd | mysql 简单操作
# 当前解释器 Anaconda3-Python 3.9(D:\soft\Anaconda3\python.exe)import numpy as npimport pandas as pd# SQLAlchemy是Python编程语言下的一款开源软件 提供了SQL工具包及对象关系映射 (ORM) 工具from sqlalchemy import create_enginedef print_data(o): print(o.shape, o.size, tuple(o.index),
2022-01-17 18:20:29
627
原创 plt | 风格样式
#%%# CY3761 | 2022-01-16 11:53#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport types# 设置全局参数plt.rcParams['font.family'] = plt.rcPara
2022-01-16 15:50:53
1097
原创 plt | 数据可视化入门
#%%# CY3761 | 2022-01-15 13:54#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport types# 设置全局参数plt.rcParams['font.family'] = plt.rcPara
2022-01-15 17:21:03
1121
原创 plt | Matplotlib概述
#%%# CY3761 | 2022-01-14 12:16#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdimport matplotlib.pyplot as pltnp.array((np, pd, plt))#%%class JsonObject: def __init__
2022-01-14 18:13:00
2157
原创 PY-pandas | 数据可视化
#%%# CY3761 | 2022-01-14 10:20#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdnp.array((np, pd))#%%class JsonObject: def __init__(self, items): self.items = i
2022-01-14 16:03:50
874
原创 PY-pandas | 分组聚合
#%%# CY3761 | 2022-01-13 10:08#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdnp.array((np, pd))#%%class JsonObject: def __init__(self, items): self.items = i
2022-01-13 19:02:06
328
原创 PY-pandas | 数学和统计指标
#%%# CY3761 | 2022-01-12 10:25#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import numpy as npimport pandas as pdnp.array((np, pd))#%%class JsonObject: def __init__(self, items): self.items = i
2022-01-12 17:29:01
238
原创 PY-pandas | 数据重塑
#%%# CY3761 | 2022-01-11 09:36#%%# 此为 jupyter 模版, 执行 build 后记住先执行-全部运行# 使用 DataSpell 进行编写文档# 变量名、函数名小写分段处理#%%# 导入项import os.pathimport numpy as npimport pandas as pdnp.array((np, pd))#%%class Dict2Obj: def __init__(self, items):
2022-01-11 18:57:46
522
原创 PY爬虫 | 爬取下厨房的本周最受欢迎
# CY3761 | 2021-10-27 20:03# 爬取下厨房的本周最受欢迎-列表数据import base64import os.pathfrom urllib import request # 下载图片import openpyxlfrom openpyxl.worksheet.hyperlink import Hyperlink # 插入链接from openpyxl.drawing.image import Image # 插入图片from pyquery impor
2022-01-10 17:18:31
541
原创 PY基础 | print 打印 tab的特点
这是在IDE测试的# CY3761 | 2021-10-31 15:37# IDLE \t 占8个空格 2个汉字位置# 真实长度def realLen(_a): _b = 0 for _ in _a: _b += 2 if u'\u4e00' <= _ <= u'\u9fff' else 1 return _b# 空格的个数def spaceNum(_a): _b = 8 _c = abs(_a - _b) %
2022-01-09 19:08:28
556
原创 PY-pandas | 作业-体测成绩转换
#%%# CY3761 | 2022-01-08 15:33#%%# 套用模版后记住先执行-全部运行#%%# 导入项import numpy as npimport pandas as pdnp, pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items():
2022-01-08 21:42:43
692
原创 PY-pandas | 数据转换之变形金刚
#%%# CY3761 | 2022-01-06 16:32#%%# 套用模版后记住先执行-全部运行#%%# 导入项import numpy as npimport pandas as pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items(): tr
2022-01-07 19:00:05
1251
原创 PY-pandas | 数据清洗
#%%# CY3761 | 2022-01-06 10:28#%%# 套用模版后记住先执行-全部运行#%%# 导入项import numpy as npimport pandas as pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items(): tr
2022-01-06 16:31:04
968
原创 PY-pandas | 数据筛选与赋值
#%%# CY3761 | 2022-01-05 12:13#%%# 套用模版后记住先执行-全部运行#%%# 导入项import numpy as npimport pandas as pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items(): tr
2022-01-05 17:59:48
823
原创 PY-pandas | 数据选择
#%%# CY3761 | 2022-01-05 09:25#%%# 描述项#%%# 导入项import numpy as npimport pandas as pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items(): try:
2022-01-05 15:09:17
710
原创 PY-pandas | 数据查看与读写
#%%# CY3761 | 2022-01-03 13:11#%%# 描述项#%%# 导入项import os.pathimport numpy as npimport pandas as pd#%%def printData(o): oItems = dict(dtype=None,dtypes=None,shape=None,size=None,index=None,columns=None) for (k,v) in oItems.items():
2022-01-04 12:02:53
411
原创 PY-pandas | 数据分析库安装与数据结构
#%%# CY3761 | 2022-01-03 09:11#%%# pandas的主要数据结构是 Series (一维数据) 与 DataFrame (二维数据)# 安装命令 `pip install pandas`# 二维数据是最常用的数据结构# DataFrame是由多种类型的列构成的二维标签数据结构 (一维列表,二维字典)# pandas 主要是数据处理, 而非数据创建#%%# 导入项import sysimport numpy as npimport pandas as p
2022-01-03 12:13:14
144
原创 PY-NumPy | 蓝色妖姬
#%%# CY3761 | 2022-01-02 09:54#%%# 需要额外安装 matplotlib | pip install matplotlib#%%import numpy as npimport matplotlib.pyplot as pltnp, plt#%%# 蓝色妖姬#%%img = plt.imread('rose.jpg') # 加载红色玫瑰花图片img.ndim, img.shape, img.size, img # ndim: 3 | shape:
2022-01-02 11:09:31
1909
原创 PY-NumPy | 高级操作展示
#%%# CY3761 | 2022-01-01 12:57#%%# 描述项#%%import numpy as npnp#%%# 高级操作展示(作业)#%%# 给定一个4维矩阵,如何得到最后两维的和?(提示,指定axis进行计算)#%%a = np.random.randint(0, 10, (2, 3, 4, 5)) # 四维矩阵 (4个中括号) | 2*3*4*5 = 120a#%%b = a.reshape(-1) # 将其转为一维print(a.size, b.s
2022-01-01 19:07:43
954
原创 PY-NumPy | 矩阵运算
矩阵是啥真不太了解,经过长时间的分析,得出以下效果(换回pycharm)#%% md# 矩阵运算#%%import numpy as np np #%% md## 矩阵乘法#%%# https://baike.baidu.com/item/%E7%9F%A9%E9%98%B5/18069 | 百度百科-矩阵#%%a = np.array([[4,2,3],[1,3,1]])b = np.array([[2,7],[-5,-7],[9,3]])a, a.shape,
2021-12-31 11:55:12
811
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人