pythonCopy code
import numpy as np
random_array = np.random.rand(5) #生成包含 5 个元素的随机数组
print(random_array)
- Python中的Scikit-learn(sklearn)包中的linear模块时,可以进行许多线性回归和分类任务。下面是一个简单的例子,展示如何使用linear模块来拟合一个线性回归模型。
- 第一步,是导入相关python包。
import numpy as np //矩阵包,用于处理多组必要数据
import matplotlib.pyplot as plt//matlab绘图实验室包,用于将结果可视化
from sklearn.linear_model import LinearRegression//基本线性回归模型包,sklearn
- 接着,需要对于输入参数进行模拟,此处使用random伪随机数(时间)进行模拟,相关代码如下:
#生成模拟数据
np.random.seed(0)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.randn(100, 1)
下分化线为对出现的函数做的解释
上处调用了np.random.rand()
函数
当您需要生成一些随机数的时候,可以使用 NumPy 库的