机器学习中的线性回归模型在python中的掉包使用(代码分析)

pythonCopy code
import numpy as np

random_array = np.random.rand(5) #生成包含 5 个元素的随机数组

print(random_array)

  • Python中的Scikit-learn(sklearn)包中的linear模块时,可以进行许多线性回归和分类任务。下面是一个简单的例子,展示如何使用linear模块来拟合一个线性回归模型。
  • 第一步,是导入相关python包。
import numpy as np //矩阵包,用于处理多组必要数据
import matplotlib.pyplot as plt//matlab绘图实验室包,用于将结果可视化
from sklearn.linear_model import LinearRegression//基本线性回归模型包,sklearn
  • 接着,需要对于输入参数进行模拟,此处使用random伪随机数(时间)进行模拟,相关代码如下:
#生成模拟数据
np.random.seed(0)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.randn(100, 1)

 下分化线为对出现的函数做的解释


上处调用了np.random.rand() 函数

当您需要生成一些随机数的时候,可以使用 NumPy 库的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值