二叉搜索树(从0-1手把手讲解)

一、概念

二、基本操作实现

准备工作:

1、查找元素

2、插入元素

三、删除元素

        一、所要删除的元素需要先找到这个节点所在的位置

        二、分情况讨论所要删除元素左右树的情况(是否为null)

        三、如果左右树都不为null,删除节点位置应该置为什么?

 1.1、寻找所要删除的节点

2.1、讨论删除节点左右树的情况

完整代码:


一、概念


        二叉搜索树又称二叉排序树,是一种可以进行快速查询的二叉树类型。

所具有的性质:

  • 若节点不为空,根节点的值大于其左子树任一节点的值。
  • 若节点不为空,根节点的值小于其右子树任一节点的值。
  • 任一节点的左右子树均为二叉搜索树

其性质的特点在于中序遍历的结果一定是升序的(如下图)

 


二、基本操作实现

准备工作:

        创建二叉树结点,以及根节点:

//创建二叉树结点
public static class Node{
        int val;
        Node left;
        Node right;
        public Node(int val) {
            this.val = val;
        }
    }
    //根节点
    private static Node root =null;

1、查找元素

        思路:结合二叉搜索树的特性,节点的左树节点值都比其小,右树节点都比其大的特性,我们从根节点的值与寻找元素比较,如果根节点小就向右树进行寻找,反之向左树寻找。

//查询元素
    public Node search(int key) {
        if (root == null) {
            return null;
        }
        //定义一个遍历节点
        Node cur = root;
        while (cur != null) {
            //寻找到返回节点
            if (key == cur.val) {
                return cur;
                //节点值小时向右树寻找
            }else if (key > cur.val) {
                cur = cur.right;
                //节点值大时向左树寻找
            } else {
                cur = cur.left;
            }
        }
        return null;
    }

2、插入元素

        思路:同样结合二叉搜索树的特性,节点的左树节点值都比其小,右树节点都比其大的特性。用cur节点去遍历二叉树,如果插入元素大于节点值就向树的右边遍历,反之向左边遍历。找到合适的位置即可(插入的元素一定都是放在叶子节点上)

        为什么插入的元素一定在叶子节点上呢?

这里的8是我们插入的元素,为什么会放在叶子节点上?是因为我们这个元素要不是比节点小要不就是大(二叉搜索树不可以包含相同的元素)并且不会存在大小相同的元素,那么他就会一直遍历下去寻找要插入的位置直到叶子节点结束(相对于叶子节点要不大就放在叶子右边要不小就放在叶子左边) 

    public boolean insert(int key) {
        if (root == null) {
            root = new Node(key);
            return true;
        }
        //cur为遍历节点
        Node cur = root;
        //因为cur一直遍历最后会变成null无法找到上一个节点
        //所以创建一个parent标记cur上一个节点
        Node parent = null;
        while (cur != null) {
            //插入元素比节点值大向右遍历
            if (cur.val > key) {
                parent = cur;
                cur = cur.left;
                //插入元素比节点值小向左遍历
            } else if (cur.val < key) {
                parent = cur;
                cur = cur.right;
            } else return false;
        }
        Node node = new Node(key);
        if (parent.val < key) {
            parent.right = node;
        } else {
            parent.left = node;
        }
        return true;
    }

三、删除元素

        所要考虑的问题:

        一、所要删除的元素需要先找到这个节点所在的位置

        二、分情况讨论所要删除元素左右树的情况(是否为null)

        三、如果左右树都不为null,删除节点位置应该置为什么?

 1.1、寻找所要删除的节点

        思路:我们需要遍历二叉搜索树,寻找所要找的节点记录下来,并且记录下它的上一个节点(因为在删除当前节点后,需要让上一个节点与删除节点的下一个节点做链接)。如果找到这个节点就调用removeNode方法去做我们的删除节点操作。

   public void remove(int key) {
        //遍历节点
        Node cur = root;
        //遍历节点的上一个节点
        Node parent = null;
        while (cur != null) {
            if (cur.val < key) {
                parent = cur;
                cur = cur.right;
            } else if (cur.val >key) {
                parent = cur;
                cur = cur.left;
            } else {
                removeNode(cur,parent);

                System.out.println(key+"所在结点删除成功");
                return;
            }
        }
    }

2.1、讨论删除节点左右树的情况

        所有情况:

1、删除节点的左节点为空(可能为根节点)

if (cur.left == null) {
            if (cur == root) {
                root = root.right;
            } else if(cur == parent.left) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }

2、删除节点的右节点为空(可能为根节点)

if (cur.right == null) {
            if (cur == root) {
                root = root.left;
            } else if (cur == parent.left) {
                parent.left = cur.left;
            } else  {
                parent.right = cur.left;
            }

3、删除节点左右树不为空(可能为根节点)

替代的节点只能是:

删除节点左树中最大的节点(最右下边的节点)

删除节点右数中最小的节点(最左下的节点)

        先上代码下面详解

 Node tParent = cur;
            Node t = cur.right;
            while (t.left != null) {
                tParent = t;
                t = t.left;
            }
            cur.val = t.val;
            if (tParent.right == t) {
                tParent.right = t.right;
            } else {
                tParent.left = t.right;
            }

4、删除节点为null(不存在)

if (cur==null) {
            return;
        }

删除节点左右树不为空的情况是我们最难理解的。先看下面的图

 

先看7和11的位置。7是 删除节点9作数中最大值的节点,11是删除节点9的右树中最小值的节点。

替代的节点只能是:

删除节点左树中最大的节点(最右下边的节点)

删除节点右数中最小的节点(最左下的节点)

因为节点的左数比其都小,右树都比其大的特性(仔细理解这个话)。只有这两个与删除节点最近值的节点才能代替删除的节点。

完整代码:

public class BinarySearchTree {
    public static void main(String[] args) {
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        binarySearchTree.insert(8);
        binarySearchTree.insert(12);
        binarySearchTree.insert(3);
        binarySearchTree.insert(6);
        binarySearchTree.insert(9);
        binarySearchTree.insert(1);
        binarySearchTree.insert(13);
        System.out.println();
        binarySearchTree.order(root);
        binarySearchTree.remove(8);
        binarySearchTree.order(root);

    }



    public static class Node{
        int val;
        Node left;
        Node right;
        public Node(int val) {
            this.val = val;
        }
    }
    //根节点
    private static Node root =null;

    //插入元素

    /**
     *
     * @param key 搜索树的性质不能有重复的值
     * @return 是否成功
     */
    public boolean insert(int key) {
        if (root == null) {
            root = new Node(key);
            return true;
        }
        //cur为遍历节点
        Node cur = root;
        //因为cur一直遍历最后会变成null无法找到上一个节点
        //所以创建一个parent标记cur上一个节点
        Node parent = null;
        while (cur != null) {
            //插入元素比节点值大向右遍历
            if (cur.val > key) {
                parent = cur;
                cur = cur.left;
                //插入元素比节点值小向左遍历
            } else if (cur.val < key) {
                parent = cur;
                cur = cur.right;
            } else return false;
        }
        Node node = new Node(key);
        if (parent.val < key) {
            parent.right = node;
        } else {
            parent.left = node;
        }
        return true;
    }


    //查询元素
    public Node search(int key) {
        if (root == null) {
            return null;
        }
        //定义一个遍历节点
        Node cur = root;
        while (cur != null) {
            //寻找到返回节点
            if (key == cur.val) {
                return cur;
                //节点值小时向右树寻找
            }else if (key > cur.val) {
                cur = cur.right;
                //节点值大时向左树寻找
            } else {
                cur = cur.left;
            }
        }
        return null;
    }

    public void order(Node node) {
        if (node == null) {
            return;
        }
        order(node.left);
        System.out.print(node.val+" ");
        order(node.right);
    }
    //删除元素
    public void remove(int key) {
        //遍历节点
        Node cur = root;
        //遍历节点的上一个节点
        Node parent = null;
        while (cur != null) {
            if (cur.val < key) {
                parent = cur;
                cur = cur.right;
            } else if (cur.val >key) {
                parent = cur;
                cur = cur.left;
            } else {
                removeNode(cur,parent);

                System.out.println(key+"所在结点删除成功");
                return;
            }
        }
    }
    public void removeNode(Node cur,Node parent) {
        //删除元素左边为null
        if (cur==null) {
            return;
        }
        if (cur.left == null) {
            if (cur == root) {
                root = root.right;
            } else if(cur == parent.left) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root = root.left;
            } else if (cur == parent.left) {
                parent.left = cur.left;
            } else  {
                parent.right = cur.left;
            }
        } else {
            Node tParent = cur;
            Node t = cur.right;
            while (t.left != null) {
                tParent = t;
                t = t.left;
            }
            cur.val = t.val;
            if (tParent.right == t) {
                tParent.right = t.right;
            } else {
                tParent.left = t.right;
            }
        }

    }

}

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极品小學生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值