
优化算法
文章平均质量分 95
优化算法
回国之路
这个作者很懒,什么都没留下…
展开
-
Optimization
一个集合 $C \subseteq \mathbb{R}^n $是凸集,如果对任意 $ x, y \in C $ 都有。原创 2024-10-29 09:18:06 · 1454 阅读 · 0 评论 -
Algorithms I: First-order methods 梯度下降
Algorithms I: First-order methods1.Gradient descent1.梯度下降考虑无约束的、平滑的凸优化问题:minxf(x)\min_x f(x)xminf(x)即,fff 是凸的且可微的,并且定义域 dom(f)=Rndom(f) = \mathbb{R}^ndom(f)=Rn。最优目标值用 f∗=minxf(x)f^* = \min_x f(x)f∗=minxf(x) 表示,解为 x∗x^*x∗。梯度下降法:选择初始点 x(0)∈Rnx^{(原创 2024-10-29 14:59:47 · 1490 阅读 · 0 评论 -
Theory II: Optimality and duality
在凸优化问题中,我们希望找到目标函数的一个下界B,使得B≤minxfx。xyminxysubject toxy≥2xy≥0我们可以直接得出下界B2,因为xy在约束边界上的最小值是2。xyminx3ysubject toxy≥2xy≥0通过不等式变换,我们可以得出相同的下界 $ B = 2 $。一般情况下,目标函数形式为pxqy,下界可以表示为B2a,其中abc≥0,且abp和a。原创 2024-10-29 22:28:17 · 1721 阅读 · 0 评论