常见的Redis使用问题及解决方案

目录

1. 缓存穿透

1.1 解决方案

2. 缓存击穿

2.1 解决方案

3. 缓存雪崩

3.1 概念图及问题描述

​编辑3.2 解决方案

4. 分布式锁

4.1 概念

4.2 基于redis来实现分布式锁

4.3 用idea来操作一遍redis分布式锁

4.4 分布式上锁的情况下,锁释放了服务器b中的锁问题

4.5 LUA保证删除原子性

4.6 分布式锁小总结


1. 缓存穿透

        当我们用户访问浏览器从应用服务器中请求web服务的时候,这时候请求的数据,在redis缓存中访问不到,那么就会去访问数据库,如果redis一直访问不到数据,它就会一直访问数据库,导致数据库压力变大,从而导致数据库崩溃。(缓存穿透)

  • 一般出现缓存穿透的原因:
    1. redis查询不到数据库;
    2. 出现很多非正常url访问(就是一直访问不存在的url路径);

其目的并不是为了得到数据,而是可能黑客利用此漏洞进行攻击,从而压垮数据库,让服务器瘫痪;

比如说一个不存在的用户id获取用户信息,不论缓存还是数据库都没有,被一直访问攻击,就会存在此问题;

1.1 解决方案

        一个一定不存在缓存几查询不到的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义;

  • 解决:

    (1) 对空值缓存:如果一个查询返回的数据为空(不管是数据是否不存在),我们仍然把这个空结果(nul)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟;

    (2) 设置可访问的名单(白名单):使用 bitmaps 类型定义一个可以访问的名单,名单id 作为 bitmaps 的偏移量每次访问和 bitmap 里面的 id 进行比较,如果访问 id 不在 bitmaps 里面,进行拦截,不允许访问;

    (3) 采用布隆过滤器:(布隆过滤器(Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。布隆过滤器可以用于检索一个元素是否在一个集合中。"它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难;将所有可能存在的数据哈希到一个足够大的 bitmaps 中,一个一定不存在的数据会被 这个 bitmaps 拦截掉,从而避免了对底层存储系统的查询压力;

    (4) 进行实时监控:当发现 Redis 的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务;

2. 缓存击穿

  • 缓存击穿问题起因:
    1. 数据库访问压力瞬时增加
    2. redis里面没有出现大量key过期
    3. redis正常运行

问题描述:

        key对应的数据存在,但在redis中过期,此时若有大量并发请求过滤,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能回瞬间把后端DB压垮;

2.1 解决方案

(1) 预先设置热门数据:在 redis 高峰访问之前,把一些热门数据提前存入到redis 里面,加大这些热门数据 key 的时长;

(2) 实时调整:现场监控哪些数据热门,实时调整 key 的过期时长;

(3) 使用锁:

  1. 就是在缓存失效的时候(判断拿出来的值为空),不是立即去 load db;
  2. 先使用缓存工具的某些带成功操作返回值的操作(比如 Redis 的 SETNX)去set一个mutex key;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值