神经网络与深度学习 作业3:分别使用numpy和pytorch实现FNN例题

————————————————————————————————————————————
在这里插入图片描述
输入值:x1, x2 = 0.5,0.3
输出值:y1, y2 =0.23, -0.07
激活函数:sigmoid
损失函数:MSE(均方误差)
初始权值:0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
目标:通过反向传播优化权值

一、过程推导 - 了解BP原理

BP(Back Propagation) 算法,中文名字是误差逆传播算法,是神经网络深度学习中最重要的算法之一,属于前馈神经网络。了解BP算法可以让我们更理解神经网络深度学习模型训练的本质。对于学习神经网络的学生尤为基础与重要。
BP神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 。Minsky和Papert在颇具影响力的"perceptron" 一书中指出,简单的感知器只能求解线性问题,能够求解非线性问题的网络应该具有感知层,但是对隐藏层神经元的学习规则还没有合理的理论依据。
BP神经网络示意图如下:
在这里插入图片描述
为了方便说明,我们这里仅讨论单隐藏BP神经网络。(原理其实都相同)
在这里插入图片描述
推导过程:(这里几乎完全摘抄周志华老师的西瓜书了,看不明白的可以查看书籍)
在这里插入图片描述
在这里插入图片描述

二、数值计算 - 手动计算,掌握细节

在这里插入图片描述

三、代码实现 - numpy手推 + pytorch自动

(1)使用numpy实现

import numpy as np
 
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("输入值 x0, x1:")
print(x1, x2)
print("输出值 y0, y1:")
print(y1, y2)
 
 
def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a
 
 
def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)
 
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)
 
    print("正向计算:预测值o1 ,o2为")
    print(round(out_o1, 5), round(out_o2, 5))
 
    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2
 
    print("损失函数(均方误差):",round(error, 5))
 
    return out_o1, out_o2, out_h1, out_h2
 
 
def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2
 
    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
 
    d_w1 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_o1 * out_h1 * (1 - out_h1) * w5 + d_o2 * out_o2 * (1 - out_o2) * w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_o1 * out_h1 * (1 - out_h1) * w7 + d_o2 * out_o2 * (1 - out_o2) * w8) * out_h2 * (1 - out_h2) * x2
 
    print("反向传播:误差传给每个权值", round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))
 
    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8
 
 
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8
 
 
if __name__ == "__main__":
 
    print("更新前的权值:",round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))
 
    for i in range(1):
        print("第" + str(i+1) + "轮:")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
 
    print("更新后的权值w:", round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

运行结果如下:
在这里插入图片描述

(2)使用pytorch实现

import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True


def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)
    print("out_h1 {}".format(out_h2))
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":

    print("=====更新前的权值=====")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

    for i in range(1):
        print("=====第" + str(i) + "轮=====")
        L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
        L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
        print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
              round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
              round(w8.grad.item(), 2))
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

运行结果如下:
在这里插入图片描述

(3)思考

1.对比【numpy】和【pytorch】程序,总结并陈述。

  • 从效果上来看,其实两个程序都差不多。只是numpy版本与torch版本保留小数位数不同。
  • 从代码量上来看其实也差不多。反向传播过程中,numpy需要把每一个求导公式打出来,torch只需要一个backward函数就可以解决了。
  • 从运行时间来看,同样是运行1000轮,numpy版本运行时间要快很多,速度大概是torch版本的十多倍。
    在这里插入图片描述
    在这里插入图片描述
    【不死心的我又试了一下十万轮循环(这里不得不佩服计算机的计算能力几分钟就能搞定),numpy依旧稳定发挥。】
    numpy版本:
    numpy版本
    torch版本:
    torch版本

2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

sigmoid:
在这里插入图片描述
torch.sigmoid:

在这里插入图片描述
对比我们发现,这两者可以说没有区别。

3.激活函数Sigmoid改变为Relu,观察、总结并陈述。

Relu函数: f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)
图像如下:
在这里插入图片描述
sigmoid函数:
在这里插入图片描述
Relu函数:

def Relu(z):
    return np.maximum(0, z)

在这里插入图片描述
通过实验结果和损失函数图像,发现激活函数为Sigmoid函数收敛的较快,而relu函数收敛的较慢。
Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性(对于特征选取更好),并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

原来损失函数MSE:
在这里插入图片描述
pytorch自带损失函数:

# L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
# 将上面代码换成下面五行代码
y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
y_pred = torch.cat((y1_pred, y2_pred), dim=0)  # 将y1_pred, y2_pred合并成一个向量
y = torch.cat((y1, y2), dim=0)  # 将y1, y2合并成一个向量
loss_func = torch.nn.MSELoss()
L = loss_func(y_pred, y)

在这里插入图片描述
从结果来看, 没有任何区别。

5.损失函数MSE改变为交叉熵,观察、总结并陈述。

交叉熵损失函数:
将loss_fuction换成下面函数。

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
    y_pred = torch.stack([y1_pred, y2_pred], dim=1)
    y = torch.stack([y1, y2], dim=1)
    loss = loss_func(y_pred, y) # 计算
    print("损失函数(交叉熵损失):", loss.item())
    return loss

运行结果:
在这里插入图片描述
改为交叉熵之后损失函数出现负数。回顾以前,交叉熵损失函数更实用于分类,而不是预测。

6.改变步长,训练次数,观察、总结并陈述。

(步长即为学习率)
步长为0.2:

  • 训练1次:
    在这里插入图片描述
  • 训练100次:
    在这里插入图片描述
  • 训练1000次:
    在这里插入图片描述
    步长为2:
  • 训练1次:
    在这里插入图片描述
  • 训练100次:
    在这里插入图片描述
  • 训练1000次:
    在这里插入图片描述
    步长越大,均方误差下降越快,收敛就越快,随着步数的增大,均方误差下降速度也在逐渐降低,收敛速度下降。我们发现训练到1000轮的时候,Gard w 已经接近0,说明已经做无效的迭代了,步长为2时,更是早在100轮之前就已经做无效迭代了。由此可见,步长长一些,能够更快的接近最优值,但也容易取不到最优值。合适的训练次数和学习率会才能提升模型的稳健性。

7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

原来的初始值:
在这里插入图片描述
权值w1-w8初始值换为随机数之后:

w1, w2, w3, w4, w5, w6, w7, w8 = torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1)

在这里插入图片描述
由图可见,当w1-w8初始值换为随机数后,均方误差的下降速度与指定权值时相比有所降低,收敛速度小于指定权值,但是最后结果都趋于一致。

8.权值w1-w8初始值换为0,观察、总结并陈述。

权值w1-w8初始值换为0:

w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]),
 torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0])

在这里插入图片描述
w1-w8初始值换为0,其实都一样。对收敛速度没有影响。最后结果都趋于一致。

参考文献

BP神经网络
【2021-2022 春学期】人工智能-作业2:例题程序复现
【2021-2022 春学期】人工智能-作业3:例题程序复现 PyTorch版

心得体会

总的来说,这次作业难度并不大。毕竟源代码都有。这次作业又让我温习了一下周志华老师的西瓜书,真的是字字珠玑,关于前馈神经网络这方面的知识,介绍的很详细,使我对反向传播算法有了更深的理解。正逢疫情封禁在宿舍,有了更多时间写作业,这次这个作业写了较长时间, 虽然不少时间都是找错和找资料。最后,感谢所有防疫工作者的辛勤付出,感激涕零,无以言表。没有一个冬天不可逾越,没有一个春天不会来临。相信在各方的努力下,疫情一定会早日退去。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红肚兜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值