内科大机器学习期末重点

本文介绍了机器学习的基本概念,包括学习的定义、学习分类如机械学习、观察学习等。讨论了机器学习与传统编程的区别,强调了数据在机器学习中的重要性。接着,提到了几种关键的机器学习算法,如线性回归、逻辑回归、SVM、决策树和朴素贝叶斯。此外,还涉及了模型评估的指标和过拟合问题,以及KNN算法的优缺点和核函数的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是机器学习

(由于图床原因导致部分图片错位,可以借鉴着看)

  • 语音识别
  • 算法推荐
  • 人脸识别
  • 垃圾邮件过滤
  • 贷款资格审核

image-20220701083341644

image-20220701083358073

2. 学习的概念
  • 与经验有关

  • 学习可以改善系统性能

  • 学习是一个有反馈的信息处理与控制过程

    image-20220701083708321

3. 学习分类:
  • 机械学习-死记硬背

  • 传授学习

    image-20220701083900070

  • 类比学习

    image-20220701083910644

  • 归纳学习

    image-20220701083928972

  • 基于解释的学习

  • 观察与发现学习–聚类(找相似,概念聚类,发现学习–归纳推理)

4. 什么是机器学习
  • 把无序的数据变为有用的信息

    image-20220701084146348

5. 机器学习算法

image-20220701084324687

# 与传统区别(简答题)

传统基于规则:1,使用显性编程解决问题。2,规则可以被人工规定

机器学习:1,使用样本训练,2,决策的规则负责或者难以描述。3.机器自动规则学习

image-20220701084355639

6. 如何进行机器学习
  • 学习如何分类

  • 训练集是用于训练机器所用的样本集合

  • 目标变量

    与ft预测结果进行对比的变量值,在分类算法中类型通常为布尔型,在回归算法中通常为连续性

image-20220701084458738

image-20220701084811088

7. 什么时候使用机器学习

image-20220701084908112

8. 机器学习分类
  1. 无监督学习(聚类)
  2. 监督学习(回归–线性回归,分类–逻辑回归)
  3. 半监督学习
  4. 强化学习

image-20220701085012655

9. 模型(算法)
好的模型–(简答题/填空题)

泛化能力强,可解释强,课扩展性强,预测速率快

image-20220630164452378

模型的有效性–(简答题/填空题)

泛化能力,误差,欠拟合,过拟合

image-20220630164714054

image-20220630164813900

过拟合的原因

image-20220630164841582

机器学习性能评估-分类

image-20220630165025996

机器学习的性能评估-回归

image-20220630165119043

9. 性能评估计算题–(计算题)

计算精度,召回率,准确率

image-20220701085357316

10. 线性回归

定义:

image-20220630165519244

训练线性回归模型

image-20220630165152390

线性回归代码

image-20220630165440970

三个必须会用的函数–fit,score,predict–都需要输入参数

image-20220630165620724

11. 逻辑回归(分类问题)

定义

image-20220630165706805

12. 支持向量机–svm

逻辑回归的强化

image-20220630165836849

13. 核函数

定义

image-20220630170040188

image-20220630170111248

核函数分类

  1. 线性核函数

    image-20220630170238222

    2.多项式核函数

    image-20220630170319986

  2. RBF径向基核函数

    image-20220630170351919

    image-20220630170651866

  3. sigmoid核函数

    image-20220630170505011

14. svm和核函数

image-20220701161450319

15. 决策树
  • 概念

    image-20220701161532335

  • 相关术语–熵,信息增益,基尼不纯度

    image-20220701161702179

  • image-20220701161732876

  • image-20220701161826710

16. 决策树的计算–(计算题)–借鉴ppt

三个算法(id3,c4.5,CART)

image-20220701161854831

image-20220701161923484

17. 朴素贝叶斯

image-20220701163656765

拉普拉斯平滑

image-20220701163733519

朴素贝叶斯使用

image-20220701163812667

(老师要求背下来)

image-20220701164253444

18. knn算法

image-20220701164354659

knn优缺点

image-20220701164430217

核函数的选择和使用

image-20220630170528602

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值