SWUST OJ405斐波那契数列

本文介绍了一种计算斐波那契数列的方法,并提供了两种实现方式:一种使用循环迭代,另一种采用动态规划。这两种方法都适用于计算指定位置的斐波那契数值。

题目描述

在数学中,斐波那契数列形成一个由以下递归关系定义的序列:也就是说,在两个起始值之后,每个数字是前面两个数字的总和。第一个斐波那契数列,也表示为Fn,对于n = 0,1,...,是:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811...有时,此序列被视为从 F1 = 1 开始,但更常见的是包含 F0 = 0。斐波那契数列以比萨的莱昂纳多命名,被称为斐波那契,尽管它们在印度早些时候已经被描述过。编写一个程序来输出一个斐波那契数列,n小于40。

输入

a number n , less and equal than 40

输出

a Fibonacci number at n

样例输入

8

样例输出

21

方法一:

#include<stdio.h>
int f(int n)
{
	if (n == 0)
	{
		return 0;
	}
	else 
	{
		int a = 1;
		int b = 1;
		int c = 1;
		while (n > 2)
		{
			c = a + b;
			a = b;
			b = c;
			n--;
		}
		return c;
	}
}
int main()
{
	int n;
	scanf("%d", &n);
	int len = f(n);
	printf("%d\n", len);
    return 0;
}

方法二:

#include<stdio.h>
int main()
{
	int n;
	scanf("%d", &n);
	int dp[1000];
	dp[0] = 0;
	dp[1] = 1;
	int i;
	for (i = 2; i <= n; i++)
	{
		dp[i] = dp[i - 1] + dp[i - 2];
	}
	printf("%d\n", dp[n]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值