离散数学复习---第九章 代数系统【全概念版】

目录

9.1 二元运算及其性质

9.2 代数系统

 9.3 代数系统的同态与同构


9.1 二元运算及其性质

定义9.2 设S为集合,函数f:S\timesS\rightarrowS称为S上的二元运算,简称为二元运算

定义9.2 设S为集合,函数f:S\rightarrowS 称为S上的一个一元运算,简称为一元运算

定义9.3 设 \circ 为S上的二元运算。如果对于任意的x,y,z∈S都有

\circ y = y \circ z

 则称运算\circ在S上是可交换的,或者说运算\circ在S上适合交换律

定义9.4  设 \circ 为S上的二元运算。如果对于任意的x,y,z∈S都有

(x \circ y)\circ z = x \circ (y \circ z)

 则称运算\circ在S上是可结合的,或者说运算\circ在S上适合结合律

定义9.5  设 \circ 为S上的二元运算。如果对于任意的x∈S都有

\circ x = x

 则称该运算\circ适合幂等律

如果S中的某些x满足x \circ x = x,则称x为运算\circ幂等元。易见如果S上的二元运算\circ 适合幂等律,则S中的所有元素都是幂等元。

定义9.6 设 \ast 和 \circ 是S上的两个二元运算,如果对任意的x,y,z∈S有

\ast (y \circ z) = (x \ast y) \circ (x \ast z)

 (y \circ z)  \ast  x = (y \ast x) \circ (z \ast x)

则称运算  \ast 对 \circ 是可分配的,或者说  \ast 对 \circ  适合分配律

定义9.7 设  \ast 和 \circ 是S上的两个可交换的二元运算,如果对于任意的x,y都有

\ast (x \circ y) = x

\circ  (x \ast y) = x

 则称 \ast 和 \circ 满足吸收律

定义9.8 设 \circ 为S上的二元运算,如果存在e_{l}(或e_{r}),使得老夫i任何x属于S都有

e_{l} \circ x = x \circ e_{l}   (或x \circ e_{r} = x)

 则称e_{l}(或e_{r})是S中关于\circ 的一个左单位元(或右单位元)。若e关于\circ 运算既是左单位元又是右单位元,则称e为S上关于\circ 的单位元,单位元也可以称作幺元

 定理9.1 设 \circ 为S上的二元运算,e_{l}e_{r}分别为 \circ 运算的左单位元和右单位元,则有

 e_{l} = e_{r} = e

且e为S上关于 \circ 的唯一的单位元。

 定义9.9 设 \circ 为S上的二元运算,若存在元素\theta _{l}(或\theta _{r})∈S,使得对于任意的x∈S有

 \theta _{l} \circ x = \theta _{l}   (或x \circ \theta _{r} = \theta _{r})

 则称\theta _{l}(或\theta _{r})是S上关于 \circ 运算的左零元(或右零元)。若\theta∈S关于 \circ 运算既是左零元又是右零元,则称\theta为S上的关于 \circ 运算的零元。

定理9.2 设 \circ 为S上的二元运算,\theta _{l}\theta _{r}分别为 \circ 运算的左零元和右零元,则有

 \theta _{l} = \theta _{r} = \theta

\theta 是S上关于  \circ 运算的唯一的零元。

 定理9.3 设 \circ 为S上的二元运算,e和\theta分别为 \circ 运算的单位元和零元。如果S至少有两个元素,则e≠\theta

 定义9.10 设 \circ为S上的二元运算,e为该运算的单位元,对于x∈S如果存在y_{l}∈S(或y_{r}∈ S),使得

y_{l} \circ x = e   (或x \circy_{r} = e)

 则称y_{l}(或y_{r})是x的左逆元(或右逆元)。若y∈S既是x的左逆元又是x的右逆元,则称y是x的逆元。如果x的逆元存在,则称x是可逆的。

定理9.4\circ为S上的二元运算,e为该运算的单位元,对于x∈S如果存在左逆元y_{1}和右逆元y_{2},则有

y_{1}=y_{2}= y

且y是x的唯一的逆元。

 定义9.11\circ为S上的二元运算,如果对于任意的x,y,z∈S,满足以下条件:

(1)若x \circ y = x \circ z且x ≠ \theta,则y = z;

(2)若y \circ x = z \circ x且x ≠ \theta,则y = z;

那么称\circ 运算满足消去律,其中(1)称作左消去律,(2)称作右消去律

9.2 代数系统

定义9.12 非空集合S和S上k个一元或二元运算 f_{1}f_{2},···,f_{k}组成的系统称作一个代数系统,简称为代数,记作 <S,f_{1}f_{2},···,f_{k}>。

定义9.13 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,组成这两个代数系统具有相同的构成成分,也称它们是同类型的代数系统。

       在规定了一个代数系统的构成成分,即集合、运算以及代数常数以后,如果再对这些运算所遵从的算律加以限制,那么满足这些条件的代数系统就具有完全相同的性质,从而构成了一类特殊的代数系统。例如,代数系统 V=<S,\circ>,其中\circ是一个可结合的二元运算,就代表了一类特殊的代数系统——半群。许多具体的代数系统,如<Z,+>,<R,+>,<M_{n}(R),\bullet> ,<P(B),U>等都是半群。又如代数系统 V=<S,\circ\ast>,其中\circ\ast是二元运算,并满足交换律、结合律、幂等律和吸收律,那么代表了另一类特殊的代数系统——

定义9.14 设V = <S,f_{1}f_{2},···,f_{k}>是代数系统,B \subseteq S。如果B对f_{1}f_{2},···,f_{k}都是封闭的,且B和S含有相同的代数常数,则称<B,f_{1}f_{2},···,f_{k}>是V的子代数系统,简称为子代数。有时将子代数系统简记为 B。

定义9.15 V_{1}=<A,\circ>和  V_{2}=<B,\ast>是同类型的代数系统,\circ\ast为二元运算,在集合A\timesB上定义二元运算\bullet如下。

\forall <a_{1}b_{1}>,<a_{2}b_{2}>∈A\timesB

<a_{1}b_{1}\bullet <a_{2}b_{2}> = <a_{1}\circa_{2}b_{1}\circb_{2}>

称 V=<A\timesB,\bullet>为V_{1}V_{2}积代数,记作V_{1}\timesV_{2}。这时也称V_{1}V_{2}为V的因子代数

定理9.5 V_{1}=<A,\circ>和V_{2}=<B,\ast>是同类型的代数系统,V_{1}\timesV_{2} = <A\timesB,\bullet>是它们的积代数。
(1)如果\circ\ast运算是可交换(可结合、幂等)的,那么 \bullet 运算也是可交换(可结合、幂等)的:

(2)如果 e_{1} 和 e_{2} (\theta _{1} 和 \theta _{2})分别为 \circ 和 \ast 运算的单位元(零元),那么<e_{1}e_{2}>(<\theta _{1}\theta _{2}>)也是 \bullet 运算的单位元(零元);
(3)如果 x 和 y 分别为 \circ 和 \ast 运算的可逆元素,那么<x,y>也是 \bullet 运算的可逆元素,其逆元就是<x^{-1}y^{-1}>。

 9.3 代数系统的同态与同构

定义9.16 设 V=<A,\circ>和 V=<B,\ast>是同类型的代数系统f:A\rightarrowB,且\forallx,y∈A有

f(x \circ y) = f(x) \ast f(y)  

则称f是 V_{1} 到 V_{2}同态映射,简称为同态

        根据同态映射的性质可以将同态分为单同态,满同态和同构,即:f 如果是单射的,则称作单同态;如果是满射的,则称作满同态,这时称V_{2}V_{1}同态像,记作V_{1} ~ V_{2};如果是双射的,则称作同构,也称代数系统V_{1}同构于V_{2},记作V_{1}\congV_{2}
       如果同态映射f是 V到V的,则称f为自同态。类似地,可以定义单自同态满自同态自同构


 本文由作者参考《离散数学(第2版)屈婉玲 著》 整理而成,仅用于期末考试复习用。

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洋洋得意呀

您的鼓励是我最大的动力,谢谢您

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值