Python机器学习案例:鸢尾花分类

1.鸢尾花分类详解

1.1 定义

鸢尾花分类(Iris Classification)是机器学习领域最经典的 监督学习案例之一。该任务通过测量鸢尾花的四个形态特征(萼片与花瓣的尺寸),训练模型自动识别其所属的三个亚种。

1.2 数据集构成

1.2.1 特征(Features)

  • 萼片长度(sepal length,cm)
  • 萼片宽度(sepal width,cm)
  • 花瓣长度(petal length,cm)
  • 花瓣宽度(petal width,cm)

1.2.2 目标类别(Labels)

  • Iris-setosa(山鸢尾)
  • Iris-versicolor(变色鸢尾)
  • Iris-virginica(维吉尼亚鸢尾)
    鸢尾花对比图

1.3 典型应用场景

  1. 机器学习教学:最基础的分类算法实践案例
  2. 算法基准测试:用于比较不同分类算法性能
  3. 特征工程研究:验证特征选择对分类效果的影响
  4. 模式识别入门:展示如何通过量化特征区分生物种类

1.4 机器学习中的特殊地位

  • 维度适中:4个特征+3个类别,复杂度适合教学演示
  • 线性可分性:Setosa与其他两类线性可分,Versicolor与Virginica存在部分重叠
  • 数据纯净:由植物学家Edgar Anderson精确测量,无噪声数据
  • 标准化程度高:被scikit-learn等主流库直接内置

1.5 分类任务示例

当模型接收到以下测量数据:

萼片长=5.1cm | 萼片宽=3.5cm | 花瓣长=1.4cm | 花瓣宽=0.2cm
模型应输出预测:Iris-setosa

2.鸢尾花分类(Python实现)

2.1 项目目标

使用鸢尾花数据集(Iris Dataset)训练模型,根据花瓣/萼片的长度和宽度特征,自动识别花的种类(Setosa/Versicolor/Virginica)

2.2 环境准备

确保已安装以下Python库:
bash pip install numpy pandas matplotlib scikit-learn

2.3 实现步骤

2.3.1 导入所需库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import tree

2.3.2 加载与探索数据

# 加载内置数据集
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['target'] = iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yant224

点滴鼓励,汇成前行星光🌟

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值