1.鸢尾花分类详解
1.1 定义
鸢尾花分类(Iris Classification)是机器学习领域最经典的 监督学习案例之一。该任务通过测量鸢尾花的四个形态特征(萼片与花瓣的尺寸),训练模型自动识别其所属的三个亚种。
1.2 数据集构成
1.2.1 特征(Features)
- 萼片长度(sepal length,cm)
- 萼片宽度(sepal width,cm)
- 花瓣长度(petal length,cm)
- 花瓣宽度(petal width,cm)
1.2.2 目标类别(Labels)
- Iris-setosa(山鸢尾)
- Iris-versicolor(变色鸢尾)
- Iris-virginica(维吉尼亚鸢尾)
1.3 典型应用场景
- 机器学习教学:最基础的分类算法实践案例
- 算法基准测试:用于比较不同分类算法性能
- 特征工程研究:验证特征选择对分类效果的影响
- 模式识别入门:展示如何通过量化特征区分生物种类
1.4 机器学习中的特殊地位
- 维度适中:4个特征+3个类别,复杂度适合教学演示
- 线性可分性:Setosa与其他两类线性可分,Versicolor与Virginica存在部分重叠
- 数据纯净:由植物学家Edgar Anderson精确测量,无噪声数据
- 标准化程度高:被scikit-learn等主流库直接内置
1.5 分类任务示例
当模型接收到以下测量数据:
萼片长=5.1cm | 萼片宽=3.5cm | 花瓣长=1.4cm | 花瓣宽=0.2cm
模型应输出预测:Iris-setosa
2.鸢尾花分类(Python实现)
2.1 项目目标
使用鸢尾花数据集(Iris Dataset)训练模型,根据花瓣/萼片的长度和宽度特征,自动识别花的种类(Setosa/Versicolor/Virginica)
2.2 环境准备
确保已安装以下Python库:
bash pip install numpy pandas matplotlib scikit-learn
2.3 实现步骤
2.3.1 导入所需库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import tree
2.3.2 加载与探索数据
# 加载内置数据集
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['target'] = iris