AtCoder Beginner Contest 298 C~F题解

AtCoder Beginner Contest 298

C

题意:有三种操作,一种是把编号为y的球放入编号为x的盒子里,一种是查询编号为x的盒子里面有哪些球,一种是查询编号为x的球都放在哪个盒子里。

直接模拟即可,一个set,一个multiset。

code:

//head
int n,m;
multiset<int> s1[N];
set<int> s2[N];

void work(){
	
	cin>>n>>m;
	while(m--)
	{
		int op,x,y;
		cin>>op;
		if(op==1){
			cin>>x>>y;
			s1[y].insert(x);
			s2[x].insert(y);
		}
		else if (op==2){
			cin>>x;
			for(auto i:s1[x]) cout<<i<<' ';
			cout<<endl;
		}
		else {
			cin>>x;
			for(auto i:s2[x]) cout<<i<<' ';
			cout<<endl;
		}
	}
}

D

题意:初始字符串为1,有三种操作,第一种是把x加到末尾,第二种是删去最前面的字符,第三种是输出当前字符串代表的值%mod。

分析可知,操作可以变为 a n s ∗ 10 + x 和 a n s − s [ b e g i n ] ∗ 1 0 l e n ans*10+x 和 ans-s[begin]*10^{len} ans10+xanss[begin]10len,然后就可以模拟了,注意取模即可。

code:

int n,m;
int qmi(int a,int k)
{
	int ans=1;
	while(k)
	{
		if(k&1) ans=ans*a%mod;
		a=a*a%mod;
		k>>=1;
	}
	return ans;
}
void work(){
	
	cin>>m;
	int ans=1;
	string s="1";
	int last=0;
	int cnt=0;
	while(m--)
	{
		int op,x;
		string ch;
		cin>>op;
		if(op==1){
			cin>>ch;
			x=ch[0]-'0';
			ans=(ans*10%mod+x)%mod;
			s+=ch;
			cnt++;
		}
		else if(op==2){
			x=s[last]-'0';
			ans=(ans-x*qmi(10,cnt-last)%mod+mod)%mod;
			last++;
		}
		else {
			cout<<ans%mod<<endl;
		}
	}
}

E

题意:甲初始站在A处,乙初始站在B处,他们分别可以等概率的跳1~P 步 和 1~Q步,如果跳出N则认为跳到N,两人轮流跳,甲先开始,谁先跳到N处谁获得胜利,问甲获胜的概率有多大。

似乎是个比较经典的概率dp,学习一下。概率dp一般是由终点状态来递推初始状态,最终初始状态的dp值即为答案。

设 d p [ i ] [ j ] [ 0 / 1 ] 表示当前甲在 i 处,乙在 j 处,且下一轮轮到甲 / 乙跳 , 甲获胜的概率 设dp[i][j][0/1]表示当前甲在i处,乙在j处,且下一轮轮到甲/乙跳,甲获胜的概率 dp[i][j][0/1]表示当前甲在i处,乙在j处,且下一轮轮到甲/乙跳,甲获胜的概率,则状态转移为:

d p [ i ] [ j ] [ 0 ] = d p [ i + 1 ] [ j ] [ 1 ] + d p [ i + 2 ] [ j ] [ 1 ] + . . . + d p [ i + p ] [ j ] [ 1 ] p dp[i][j][0]=\frac{dp[i+1][j][1]+dp[i+2][j][1]+...+dp[i+p][j][1]}{p} dp[i][j][0]=pdp[i+1][j][1]+dp[i+2][j][1]+...+dp[i+p][j][1]

注意要取 m i n ( n , i + x ) min(n,i+x) min(n,i+x), 同理我们可以推出 d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1]的转移。

边界条件为: d p [ n ] [ i ] [ 0 / 1 ] = 1 , d p [ i ] [ n ] [ 0 / 1 ] = 0 dp[n][i][0/1]=1,dp[i][n][0/1]=0 dp[n][i][0/1]=1,dp[i][n][0/1]=0.

code:

int dp[N][N][2];
int n,m;
int qmi(int a,int k)
{
	int ans=1;
	while(k)
	{
		if(k&1) ans=ans*a%mod;
		a=a*a%mod;
		k>>=1;
	}
	return ans;
}
void work(){
	
	cin>>n;
	int a,b,p,q;
	cin>>a>>b>>p>>q;
	int invp=qmi(p,mod-2),invq=qmi(q,mod-2);
	for(int i=0;i<n;i++){
		for(int k=0;k<2;k++) {
			dp[n][i][k]=1;
			dp[i][n][k]=0;
		}
	}
	for(int i=n-1;i>=0;i--){
		for(int j=n-1;j>=0;j--){

			for(int k=1;k<=p;k++){
				dp[i][j][0]+=dp[min(i+k,n)][j][1];
			}
			dp[i][j][0]%=mod;
			dp[i][j][0]=dp[i][j][0]*invp%mod;

			for(int k=1;k<=q;k++){
				dp[i][j][1]+=dp[i][min(j+k,n)][0];
			}
			dp[i][j][1]%=mod;
			dp[i][j][1]=dp[i][j][1]*invq%mod;
		}
	}

	cout<<dp[a][b][0]<<endl;
}

F

题意:给定一个网格,网格上有N个点,给定N个点的坐标和值,可以取网格上某一行和一列上的所有的值,问这所有值的和最大是多少。

分析不难发现,我们要求的是其实是 r [ i ] + c [ j ] − v [ i ] [ j ] 的最大值 r[i]+c[j]-v[i][j]的最大值 r[i]+c[j]v[i][j]的最大值 r [ i ] 表示 i 行上的和, c [ j ] 表示 j 列上的和, v [ i ] [ j ] 表示 i 行 j 列上的值 r[i]表示i行上的和,c[j]表示j列上的和,v[i][j]表示i行j列上的值 r[i]表示i行上的和,c[j]表示j列上的和,v[i][j]表示ij列上的值

首先想到的是可以枚举每一行,然后枚举每一列,但是这样的时间复杂度是不允许的,不妨把每一列的值从大到小排序,这样我们可以进行分类讨论了:

  1. 枚举到第 j 列时,当前格子上没有值 , 也就是 v [ i ] [ j ] = 0 枚举到第j列时,当前格子上没有值,也就是v[i][j]=0 枚举到第j列时,当前格子上没有值,也就是v[i][j]=0,则我们无需继续枚举了,因为不会让结果更优,因为我们是从大到小枚举的。
  2. 枚举到第 j 列时,当前格子上有值 , 也就是 v [ i ] [ j ] ! = 0 枚举到第j列时,当前格子上有值,也就是v[i][j]!=0 枚举到第j列时,当前格子上有值,也就是v[i][j]=0,则我们仍要继续枚举,不断更新答案,直到出现情况1.

可是看起来这样的时间复杂度还是 O ( n 2 ) O(n^2) O(n2)的,但实际上不是的,因为实际的点的数量只有N个,我们N个点总共最多只会枚举N次(根据什么什么原理),因此时间复杂度是 O ( n ) O(n) O(n)的。

code:

#define all(x) (x).begin(),(x).end()
typedef pair<int,int> pii;
int n,m;
map<int,int> r,c;
map<pii,int> mp;

void work(){
	cin>>n;
	for(int i=1;i<=n;i++){
		int x,y,z;
		cin>>x>>y>>z;
		r[x]+=z;
		c[y]+=z;
		mp[{x,y}]=z;
	}
	vector<pii> v1,v2;
	for(auto [x,y]:r) {
		v1.push_back({y,x});
	}
	for(auto [x,y]:c) {
		v2.push_back({y,x});
	}
	sort(all(v1));
	sort(all(v2));
	reverse(all(v1));
	reverse(all(v2));
	int ans=0;
	for(auto i:v1){
		for(auto j:v2){
			if(mp[{i.y,j.y}]){
				ans=max(ans,r[i.y]+c[j.y]-mp[{i.y,j.y}]);
			}
			else {
				ans=max(ans,r[i.y]+c[j.y]);
				break;
			}
		}
	}
	cout<<ans<<endl;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值