- 博客(2)
- 收藏
- 关注
原创 斐波那契数列
x^2=x+1,解得x1=(1+sqrt(5))/2,x2=(1-sqrt(5))/2,(这里sqrt是开根号的意思)设通解为f(n)=a*x1^n+b*x2^n,代入初始条件f(0)=0,f(1)=1,有a=1/sqrt(5),b=-1/sqrt(5),有f(n)的通项公式为。进而得到[1,1][1,0]^(n-1)*[f(1),f(0)]=[f(n),f(n-1)];也就是:F(0) = 0,F(1) = 1, F(n) = F(n - 1) + F(n - 2),其中 n > 1 ,给定。
2024-03-24 22:01:25 544
原创 求幂和对数
首先判断n<=0和n=1时的情况,若n为2的幂,则其为偶数,除以2后仍为偶数,除了为1的特殊情况(所以首先判断为1的情况),进行多次判断,即可知其是否为2的幂,跳出while循环后可知n为2的幂,应该返回true.设n为01000,因为负数在计算机内是以补码的形式进行存储,则-n可由n得到,即除符号位按位取反再加一,则-n为01111,进行与运算后结果为01000,和n相同,可知其为2的幂,返回值为true.如n为01000,则n-1为00111,进行与运算结果为0可知其为2的幂,此时返回值为true。
2023-04-22 17:31:24 107 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人