自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Task3:数据增强,提升模型表现#AI夏令营 #Datawhale #夏令营

这样做的目的是为了使频谱图中的值更符合人类的听觉感知,同时也有助于后续的图像处理。这种数据增强方法模拟了某些频率缺失的情况,增强模型对频率信息不完整的鲁棒性。这种数据增强方法模拟了音频在时间上的随机变动,有助于提高模型的鲁棒性。函数将dB单位的频谱图归一化到0-255之间,以便将频谱图作为图像处理。在之前的基础上进行改进,当然你可以根据官方提供的文档进行数据增强。然后是超参数的调正,我的bs为64,50个epoch,lr为0.003。这一步的目的是将视频中的音频数据提取出来,以便后续处理。

2024-07-20 22:59:00 707

原创 Task2:从baseline入门深度学习#AI夏令营 #Datawhale #夏令营

现在,将介绍如何训练Deepfake检测模型,并在每个epoch后评估模型在验证集上的性能。例如,可以在这里应用图像变换,如大小调整、标准化等操作,以便将数据准备好用于模型训练。在本文中,将探讨如何使用深度学习技术来开发一个用于检测Deepfake的模型。为了检测Deepfake,选择了C3D模型,当然你可以选择其他模型。可以点击进行学习,下面是是我做的实验,也算是对Task1中提到的直接使用视频进行实验的一个补充吧。在官方的Task2的学习中,提供了很详细的入门深度学习的教程,链接在这。

2024-07-15 17:54:53 301

原创 Task1:入门Deepfake & 初步熟悉Baseline#AI夏令营 #Datawhale #夏令营

它这里主要是处理的是视频中音频,而非原视频,使用的是一种伪二维图片的形式来进行检测,当然你也可以使用语音原来的一维数据音频数据。但对于深度学习模型而言,直接使用波形数据可能不够高效和有效。生成MEL频谱图是将音频数据转换为图像数据的常见方法之一。具体的是通过使用Librosa库提取音频特征并生成MEL频谱图,为模型提供了更丰富的输入信息,从而提升了模型在音频任务中的表现。# 提取音频# 加载音频文件# 生成MEL频谱图# 将频谱图转换为dB单位# 归一化到0-255之间。

2024-07-14 17:31:06 925

原创 基于星火大模型的群聊对话分角色要素提取挑战#AI夏令营 #Datawhale #夏令营

通过提供模型的URL、应用ID、API密钥等信息,建立与大模型的连接,并发送用户输入的消息,获取并返回模型生成的回复。这段代码用于清理并合并聊天记录中的连续重复行,通过函数 `process` 分割聊天记录、检测重复行并移除它们,然后将处理后的聊天记录应用于训练和测试数据集中的每一行。这段代码将处理后的聊天数据写入名为 `traindata.jsonl` 的文件中,为了满足训练需求,数据集被重复12次,确保达到足够的训练数据量。微调需要排队,建议大家,可以多开几个训练,增大被选中的概率。

2024-07-02 23:42:03 2572 1

原创 分子AI预测赛Task1笔记#AI夏令营 #Datawhale #夏令营

使用 AutoGluon 进行表格数据建模不仅简单高效,还能在有限的时间内获取高质量的预测结果。在本教程中,我们将使用 AutoGluon 来对表格数据进行预处理、建模、预测,并将结果保存为提交文件。赛题提供的数据比较有限,仅有几百条,如果能搜索出合适的数据扩充数据集将会是很大的提升,当然数据的搜索也是非常困难的。在这一步,我们将读取数据,删除包含大量缺失值的列,并将数据类型转换为数值类型。在模型训练完成后,我们将使用训练好的模型对测试数据进行预测,并将预测结果保存为 CSV 文件。,并去除不必要的列。

2024-07-02 22:25:17 1042

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除