- 博客(27)
- 收藏
- 关注
原创 分段(训练集,验证集,测试集)
# Split datasets explicitly train_ds, valid_ds, test_ds = model_wrapper.benchmark.split(model_wrapper.epoch, model_wrapper.step) # Start training the model print("Starting training...") model_wrapper.train(train_ds) # Directly use the tra
2024-12-15 18:06:46
265
原创 指标检测代码
import tensorflow as tfclass CustomPrecision(tf.keras.metrics.Metric): def __init__(self, name='precision', **kwargs): super(CustomPrecision, self).__init__(name=name, **kwargs) self.true_positives = self.add_weight(name='tp', initializ
2024-12-15 18:02:48
368
原创 【脚本】bash和sh在运行脚本方面的不同
bash和sh都是Unix shell,但它们有一些关键的区别,特别是在运行脚本时。(Unix shell 即命令行解释器,用于与操作系统交互。sh命令行编辑、历史记录、数组bashbashshdashbashshbash[[ ... ]]<(...)sh[ ... ]
2024-07-26 17:57:45
409
原创 【混淆矩阵和ROC曲线】结果应该怎么理解?
X轴是假阳性率 (False Positive Rate, FPR),Y轴是真阳性率 (True Positive Rate, TPR),也称为召回率。混淆矩阵是一个表格,它显示了模型预测的类别与真实类别之间的关系。FP (False Positives): 错误预测为正类的数量。FN (False Negatives): 错误预测为负类的数量。TP (True Positives): 正确预测为正类的数量。TN (True Negatives): 正确预测为负类的数量。) 可以用来衡量模型的整体性能。
2024-05-12 15:35:33
365
2
原创 hadoop+spark词频统计+时间记录
import org.apache.spark.SparkContextimport org.apache.spark.SparkContext._import org.apache.spark.SparkConfimport java.io.PrintWriterobject WordCount { def main(args: Array[String]) { val inputFile = "file:///usr/local/spark/mycode/wordcou
2024-01-08 00:45:33
483
原创 【微信小程序】边框的多种样式设置及效果
四、双线(double)五、凹陷(groove)七、内嵌(insert)八、外嵌(outset)三、点线(dotted)六、凸起(ridge)一、实线(solid)
2023-08-27 21:55:10
5351
1
空空如也
特征变换中的Sift函数的使用
2022-12-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人