Dijkstra-朴素O(n^2)
1. 初始化距离数组, dist[1] = 0, dist[i] = inf;
2. for n次循环 每次循环确定一个min加入S集合中,n次之后就得出所有的最短距离
3. 将不在S中dist_min的点->t
4. t->S加入最短路集合
5. 用t更新到其他点的距离Dijkstra-堆优化O(mlogm)
1. 利用邻接表,优先队列
2. 在priority_queue<PII,vector<PII>,greater<PII>> heap;中将返回堆顶
3. 利用堆顶来更新其他点,并加入堆中类似宽搜Bellman_fordO(nm)
1. 注意连锁想象需要备份, struct Edge{int a,b,c} Edge[M];
2. 初始化dist, 松弛dist[x.b] = min(dist[x.b], backup[x.a]+x.w);
3. 松弛k次,每次访问m条边Spfa O(n)~O(nm)
1. 利用队列优化仅加入修改过的地方
2. for k次
3. for 所有边利用宽搜模型去优化bellman_ford算法
4. 更新队列中当前点的所有出边Floyd O(n^3)
1. 初始化d
2. k, i, j 去更新d
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible
。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。
输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible
。
数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
#include<bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int n, m, k;
int d[N][N];
void floyd(){
for(int k = 1; k <= n; k ++ ){
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
}
int main(){
cin >> n >> m >> k;
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
if(i == j)
d[i][j] = 0;
else
d[i][j] = INF;
}
}
while(m -- ){
int x, y, z;
cin >> x >> y >> z;
d[x][y] = min(d[x][y], z);
}
floyd();
while(k -- ){
int x, y;
cin >> x >> y;
int t = d[x][y];
if(t > INF / 2)
puts("impossible");
else
cout << t << endl;
}
return 0;
}