Floyd求最短路( Floyd + 最短路 )

Dijkstra-朴素O(n^2)

1. 初始化距离数组, dist[1] = 0, dist[i] = inf;
2. for n次循环 每次循环确定一个min加入S集合中,n次之后就得出所有的最短距离
3. 将不在S中dist_min的点->t
4. t->S加入最短路集合
5. 用t更新到其他点的距离

Dijkstra-堆优化O(mlogm)

1. 利用邻接表,优先队列
2. 在priority_queue<PII,vector<PII>,greater<PII>> heap;中将返回堆顶
3. 利用堆顶来更新其他点,并加入堆中类似宽搜

Bellman_fordO(nm)

1. 注意连锁想象需要备份, struct Edge{int a,b,c} Edge[M];
2. 初始化dist, 松弛dist[x.b] = min(dist[x.b], backup[x.a]+x.w);
3. 松弛k次,每次访问m条边

Spfa O(n)~O(nm)

1. 利用队列优化仅加入修改过的地方
2. for k次
3. for 所有边利用宽搜模型去优化bellman_ford算法
4. 更新队列中当前点的所有出边

Floyd O(n^3)

1. 初始化d
2. k, i, j 去更新d


 

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

#include<bits/stdc++.h>
using namespace std;
const int N = 210, INF = 0x3f3f3f3f;
int n, m, k;
int d[N][N];
void floyd(){
    for(int k = 1; k <= n; k ++ ){
        for(int i = 1; i <= n; i ++ ){
            for(int j = 1; j <= n; j ++ ){
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
}
int main(){
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i ++ ){
        for(int j = 1; j <= n; j ++ ){
            if(i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
        }
    }

    while(m -- ){
        int x, y, z;
        cin >> x >> y >> z;
        d[x][y] = min(d[x][y], z);
    }
    floyd();
    while(k -- ){
        int x, y;
        cin >> x >> y;
        int t = d[x][y];
        if(t > INF / 2)
            puts("impossible");
        else
            cout << t << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值