筛质数( 数学知识 + 质数 + 线性筛法 + 筛法求素数 )

博客探讨了三种质数筛选算法:朴素筛法、埃式筛法和线性筛法。通过比较它们的实现细节和运行时间,解释了埃式筛法为何只需要筛当前数之前的质数倍数。文章提供了C++代码示例,展示了如何使用这些算法来找出给定范围内的质数个数。
摘要由CSDN通过智能技术生成

合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数相亲数是以它为基础的。

素数就是质数。

给定一个正整数 n,请你求出 1∼n 中质数的个数。

输入格式

共一行,包含整数 n。

输出格式

共一行,包含一个整数,表示 1∼n 中质数的个数。

数据范围

1≤n≤106

输入样例:

8

输出样例:

4

 

朴素筛法 

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
    for(int i = 2; i <= n; i ++ ){
        if(st[i]) continue;
        primes[cnt ++ ] = i; // 把素数存起来
        for(int j = i; j <= n; j += i) // 不管是合数还是质数,都用来筛掉后面它的倍数
            st[j] = true;
    }
}
int main(){
    cin >> n;
    get_primes(n);
    cout << cnt << endl;
    return 0;
}

上面这一种运行时间49ms左右, 注意,如果改为

for(int i = 2; i <= n; i ++ ){
        if(!st[i])
        primes[cnt ++ ] = i;
        for(int j = i; j <= n; j += i)
            st[j] = true;
    }

 运行时间就变成了153ms左右


埃式筛法

埃氏筛法为什么筛当前数之前的质数的倍数即可?由算计基本定理得,合数可以写为2个或以上的质数的积,即合数可以写成1个质因子和另外一个小于它的数的积,(要么合数=质x质 ,要么合数=质x质x质…,又质x质=合数,故合数=质x质 或 合数=质x合,即 合数=质x一个小于它的数)。 

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
    for(int i = 2; i <= n; i ++ ){
        if(!st[i]){
            primes[cnt ++ ] = i;
            for(int j = i; j <= n; j += i ) // 用质数就把所有的合数都筛掉
                st[j] = true;
        }
    }
}
int main(){
    cin >> n;
    get_primes(n);
    cout << cnt << endl;
    return 0;
}

 


线性筛法

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
    for(int i = 2; i <= n; i ++ ){
    // //外层从 2 ~ n 迭代,因为这毕竟算的是 1 ~ n 中质数的个数,而不是某个数是不是质数的判定
        if(!st[i])
            primes[cnt ++ ] = i;
        for(int j = 0; primes[j] <= n / i; j ++ ){
        // 变形一下得到——primes[j] * i <= n,把大于 n 的合数都筛了就没啥意义了
            st[primes[j] * i] = true; // 用最小质因子去筛合数
//1)当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的
//最小质因子,所以primes[j]*i的最小质因子就是primes[j];
//2)当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是
//prime[j],之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小
//质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该
//退出循环,避免之后重复进行筛选。
            if(i % primes[j] == 0) break;
        }
    }
}
int main(){
    cin >> n;
    get_primes(n);
    cout << cnt << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值