合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
素数就是质数。
给定一个正整数 n,请你求出 1∼n 中质数的个数。
输入格式
共一行,包含整数 n。
输出格式
共一行,包含一个整数,表示 1∼n 中质数的个数。
数据范围
1≤n≤106
输入样例:
8
输出样例:
4
朴素筛法
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
for(int i = 2; i <= n; i ++ ){
if(st[i]) continue;
primes[cnt ++ ] = i; // 把素数存起来
for(int j = i; j <= n; j += i) // 不管是合数还是质数,都用来筛掉后面它的倍数
st[j] = true;
}
}
int main(){
cin >> n;
get_primes(n);
cout << cnt << endl;
return 0;
}
上面这一种运行时间49ms左右, 注意,如果改为
for(int i = 2; i <= n; i ++ ){
if(!st[i])
primes[cnt ++ ] = i;
for(int j = i; j <= n; j += i)
st[j] = true;
}
运行时间就变成了153ms左右
埃式筛法
埃氏筛法为什么筛当前数之前的质数的倍数即可?由算计基本定理得,合数可以写为2个或以上的质数的积,即合数可以写成1个质因子和另外一个小于它的数的积,(要么合数=质x质 ,要么合数=质x质x质…,又质x质=合数,故合数=质x质 或 合数=质x合,即 合数=质x一个小于它的数)。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
for(int i = 2; i <= n; i ++ ){
if(!st[i]){
primes[cnt ++ ] = i;
for(int j = i; j <= n; j += i ) // 用质数就把所有的合数都筛掉
st[j] = true;
}
}
}
int main(){
cin >> n;
get_primes(n);
cout << cnt << endl;
return 0;
}
线性筛法
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N];
bool st[N];
int n, cnt;
void get_primes(int n){
for(int i = 2; i <= n; i ++ ){
// //外层从 2 ~ n 迭代,因为这毕竟算的是 1 ~ n 中质数的个数,而不是某个数是不是质数的判定
if(!st[i])
primes[cnt ++ ] = i;
for(int j = 0; primes[j] <= n / i; j ++ ){
// 变形一下得到——primes[j] * i <= n,把大于 n 的合数都筛了就没啥意义了
st[primes[j] * i] = true; // 用最小质因子去筛合数
//1)当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的
//最小质因子,所以primes[j]*i的最小质因子就是primes[j];
//2)当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是
//prime[j],之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小
//质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该
//退出循环,避免之后重复进行筛选。
if(i % primes[j] == 0) break;
}
}
}
int main(){
cin >> n;
get_primes(n);
cout << cnt << endl;
return 0;
}