最短编辑距离( 动态规划 + 线性dp )

给定两个字符串 A 和 B,现在要将 A 经过若干操作变为 B,可进行的操作有:

  1. 删除–将字符串 A 中的某个字符删除。
  2. 插入–在字符串 A 的某个位置插入某个字符。
  3. 替换–将字符串 A 中的某个字符替换为另一个字符。

现在请你求出,将 A 变为 B 至少需要进行多少次操作。

输入格式

第一行包含整数 n,表示字符串 A 的长度。

第二行包含一个长度为 n 的字符串 A。

第三行包含整数 m,表示字符串 B 的长度。

第四行包含一个长度为 m 的字符串 B。

字符串中均只包含大小写字母。

输出格式

输出一个整数,表示最少操作次数。

数据范围

1≤n,m≤1000

输入样例:

10 
AGTCTGACGC
11 
AGTAAGTAGGC

输出样例:

4

AcWing 902. 最短编辑距离的dp集合的元素具体描述 - AcWing

视频下面的讲解看懂了感觉就有点悟了QUQ 

 ij是动态的理解:ij前面的序列已匹配,ij后面还有没匹配的元素。所以它在中间是相对末位。

 分为对最后一个字符进行操作和对之前的字符操作,对最后一个字符进行操作又细分为增删改。

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
char a[N], b[N];
int f[N][N];
int n, m;
int main(){
    cin >> n >> a + 1;
    cin >> m >> b + 1;
    for(int i = 1; i <= n; i ++ )
        f[i][0] = i;
    for(int j = 1; j <= m; j ++ )
        f[0][j] = j;
    for(int i = 1; i <= n; i ++ ){
        for(int j = 1; j <= m; j ++ ){
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            if(a[i] == b[j])
                f[i][j] = min(f[i][j], f[i - 1][j - 1]);
            else
                f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值