数据挖掘技术
文章平均质量分 88
TiAmo114
这个作者很懒,什么都没留下…
展开
-
聚类实验(Matlab)
1. K-means算法的选择:K-means是一种常用的聚类算法,适用于处理大量数据和高维数据。4. t-SNE算法的可视化:t-SNE是一种降维算法,可以将高维数据映射到二维或三维空间中,从而方便我们对聚类结果进行可视化分析。使用t-SNE算法将聚类后的数据映射到二维空间,并与原始数据进行对比,可以帮助我们观察到聚类的效果和数据的分布情况。3. 聚类的准确率:计算聚类的准确率是一个重要的指标,可以帮助我们评估聚类算法的性能。- 特点:余弦距离可以很好地衡量数据之间的方向相似性,而不受数据大小的影响。原创 2024-01-18 17:34:54 · 1173 阅读 · 1 评论 -
数据预处理三(MATLAB)
它以真阳性率(True Positive Rate,也称为灵敏度或召回率)为纵轴,以假阳性率(False Positive Rate)为横轴,通过绘制不同阈值下的模型性能来展示模型在不同分类阈值下的表现。FPR和TPR通常被用于绘制ROC曲线(Receiver Operating Characteristic Curve),ROC曲线是以FPR为横轴,TPR为纵轴的曲线,用于评估分类器在不同阈值下的性能。因此,使用ROC曲线可以直观地评估分类器的性能,帮助我们选择最佳分类阈值和比较不同分类器的性能。原创 2024-01-17 20:40:00 · 1020 阅读 · 0 评论 -
数据预处理(Matlab)
3.原创 2024-01-15 15:00:00 · 1462 阅读 · 0 评论