1.数制系统
数制的概念:数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。数制有很多种,在计算机中常用的数制有:二进制、八进制、十进制、十六进制
二进制:由0、1两个数字组成,逢二进一 1+1=(10)2,二进制数的书写通常在数的右下方注上基数2,或在后面加B表示。例如:(1011)2、1011B
八进制:由0、1、2、3、4、5、6、7八个数字组成,逢八进一 7+1=(10)8,八进制数的书写通常在数的右下方注上基数8,或在后面加Q表示。例如:(76)8、15Q
十进制:由0、1、2、3、、4、5、6、7、8、9十个数字组成,逢十进一 9+1=10,例如:8、17、35
十六进制:由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数字组成,逢十六进一 F+1=(10)16,十六进制数的书写通常在数的右下方注上基数16,或在后面加上H表示。例如:(7A)16、15H
2. 数的位权(乘法)
十进制数110
110=1×102+1×101 +0×100 =100+10+0
二进制数110B
(110)2=1×22 +1×21+0×20 =4+2+0
八进制数110Q
(110)8=1×82+1×81 +0×80 =64+8+0
十六进制数110H
(110)16 =1×162+1×161 +0×160 =256+16+0
案例:将下列不同进制的数按权展开。(答案在文章末尾)
243、(10110001)2、74Q、2AH
3.进制转换
除法:可以进行两个进制间的直接转换
十进制—>二进制
十进制—>八进制
十进制—>十六进制
一眼看出法(二进制->八进制/十六进制)
二进制->八进制 三位一组
二进制->十六进制 四位一组
八进制->十六进制 不能直接转,用二进制或十进制做桥梁
做题时只需要知道二进制1111每一个1的十进制数分别是8、4、2、1,即可一眼看出,例如:(01001101)2的十六进制是(4D)16
答案:
243 = 243
(10110001)2 = 128+32+16+1=177
74Q = 7x8+4x1=56+4=60
2AH = 2x16+10x1=32+10=42