MySQL:关系型数据库管理系统_索引_索引优化_视图

一、索引

1.索引介绍

        索引类似图书的目录,一种数据结构,通过索引可以快速的找到需要查询的内容。

InnoDB引擎:索引和数据都是存储在表名.idb文件中。

MyISAM引擎:索引和数据存储在不同的文件中,表名.MYD 存储数据,表名.MYI存储索引。

2.索引的结构

        索引在数据库底层有两种结构:BTREE和HASH。默认使用的是BTREE。

1.HASH结构

        Hash底层实现是由Hash表来实现的,是根据键值 <key,value> 存储数据的结构。非常适合根据key查找value值,也就是单个key查询,或者说等值查询。

缺点

  1. 哈希表是把索引字段映射成对应的哈希码然后再存放在对应的位置,这样的话,如果我们要进行模糊查找的话,显然哈希表这种结构是不支持的,只能遍历这个表

  2. 适合于精确的查找,也不适合范围查询

2.BTREE结构

        BTree分为B-Tree和B+Tree,MySQL数据库索引采用的B+Tree,B+Tree是在B-Tree上做了优化改造。

1.B-Tree

  • 索引值和data(数据)分布在整棵树结构中

  • 每个节点可以存放多个索引值以及对应的data(数据)

  • 树节点中的多个索引值从左到右升序排列

缺点:所有的节点都存放数据,数据会占用空间,导致存放的索引变少。

2.B+Tree

  • 非叶子节点不存储data数据,只存储索引值,这样便于存储更多的索引值

  • 叶子节点包含了所有的索引值和data数据

  • 叶子节点用指针连接,提高区间的访问性能

 

        相比B-树,B+树进行范围查找时,只需要查找定位两个节点的索引值,然后利用叶子节点的指针进行遍历即可。而B-树需要遍历范围内所有的节点和数据,显然B+Tree效率高。  

3.索引的优点

        创建索引可以大大提高系统的查询能力

  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

  • 可以大大加快数据的检索速度,这也是创建索引的最主要的原因。

  • 可以加速表和表之间的连接,特别是在实现数据的完整性方面特别有意义。

  • 在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。

  • 通过使用索引,可以在查询的过程中 ,使用查询优化器,提高系统的性能。

 4.索引的缺点
  1. 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

  2. 索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间。如果要建立聚簇索引,那么需要的空间就会更大。

  3. 当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

 5.创建索引的字段选择
  1. 在经常需要搜索的列上,可以加快搜索的速度;

  2. 在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;

  3. 在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;

  4. 在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;

  5. 在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;

  6. 在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。

        建立索引,一般按照select的where条件来建立。

 6.索引分类
1.介绍

        索引分为单列索引,组合索引,全文索引。

        单列索引就是只是给某个列加索引;组合索引是给表中大于等于两个列添加索引。

 2.单列索引:

        单列索引又分为:主键索引、普通索引和唯一索引。

主键索引
  • 它是一种特殊的唯一索引,不允许有空值

  • 在创建或修改表时添加主键约束即可,添加了主键约束就会自动创建主键索引

  • 每个表只能有一个主键约束,所以一张表只能有一个主键索引

-- 1. 创建表时指定主键约束
create table 表名(
   字段1 类型 primary key,
   ...
);

-- 2. 为创建好表,但是并没有指定主键约束的表添加主键约束
alter table 表名 add primary key(字段名);

-- 3. 查看某张表中的所有索引
show index from 表名;
 普通索引

特点:

        这是最基本的索引类型,基于普通字段建立的索引,没有任何限制。

普通字段: 非主键约束,非外键约束,非唯一约束

-- 1. 创建表时创建普通索引
create table 表名(
   字段1 类型,
   ...,
   index [索引名称](字段名) -- 不指定索引名称,自动生成
);

-- 2. 为创建好的表添加普通索引
alter table 表名 add index [索引名称](字段名); -- 不指定索引名称,自动生成

-- 3. 为创建好的表添加普通索引
create index <索引名称> on 表 (字段名); -- 必须指定索引名称
 唯一索引
-- 创建表时指定唯一约束,会自动创建唯一索引
create table 表名(
   字段1 类型 unique,
   ...
);

-- 为创建好的表添加唯一索引
alter table 表名 add unique index [索引名称](字段名);

-- 为创建好的表添加唯一索引
create unique index <索引名称> on 表名(字段名);
 3.组合索引

给表中大于等于两个列添加索引。

但是需要满足最左前缀,创建组合索引相当于创建了多个索引,一般把最常用的放在最左边。

-- 语法格式:
create index 索引名 on 表名(列1,列2...)

create index index3 on demo(col1,col2,col3)

create index index3 on demo(col1,col2)
 4.全文索引

创建

-- 创建表
create table tb_fulltext(
	id int(11) primary key auto_increment,
	name varchar(100),
    address varchar(200),
    FULLTEXT index_name (name)
);
-- 方式2
ALTER TABLE table_name ADD FULLTEXT index_name(column);

 使用

insert into tb_fulltext values(1,'tony','beijing yizhuang');
insert into tb_fulltext values(2,'kevin','beijing yizhuang jingkaiqu');
insert into tb_fulltext values(3,'jordan','beijing daxing');

explain select * from tb_fulltext where match(name,address) against('yizhuang');
select * from tb_fulltext where match(name) against('yizhuang');// 执行报错

 

against中内容有三种模式:

  • 自然语言模式:IN NATURAL LANGUAGE MODE

  • 布尔模式:IN BOOLEAN MODE

  • 查询扩展模式:WITH QUERY EXPANSION

        自然语言模式:拆分出来的关键字必须严格匹配。例如beijing只能通过beijing搜索,不能通过bei搜索。

        布尔模式:支持特殊符号。即使对没有全文索引的列也可以进行搜索,但是非常慢。查询时必须从最左开始查询

        查询扩展:查询时进行扩展查询,发现和条件有关系的内容都查询出来

5.中文拆词器

        由于中文是没有空格的,MySQL 从5.7.6开始内置ngram中文分词插件。可以设置把整个中文按照指定大小进行拆词。

设置拆词长度(根据自己的需求进行完成即可)

ngram_token_size=2

给address创建全文索引。

create fulltext index index3 on ft(address)  with parser ngram;
 7.聚集索引和非聚集索引

Innodb存储引擎:(索引和数据在同一个文件中)
    
        聚集索引 | 聚簇索引:并不是索引的分类,索引值和行数据存储在一起,数据会按照索引的顺序进行存储。
         主键索引为聚集索引的一种,也可以自定义聚集索引(很少自定义)。
表中没有主键索引,自动找一个唯一非空的索引作为聚集索引,自动创建一个隐藏的字段作为聚集索引。
                                             
        非聚集索引 | 非聚簇索引 | 二级索引 | 辅助索引:并不是索引的分类,索引值和主键值存储在一起,根据索引值找到主键,根据主键找到行数据(回表查询)。                                                                 
 MyISAN存储引擎:(索引和数据在不同的文件中)
        非聚集索引:索引值和行数据的地址存储在一起。 

二、索引优化

1.使用短索引(前缀索引)

对串列进行索引,如果可能应该指定一个前缀长度。

CREATE  INDEX  index_name  ON  table_name (column(length));
 2.索引列排序

        MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

3.like语句操作

        一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引,而like “aaa%”(非前导模糊查询)可以使用索引。使用后,优化到range级别。

explain select * from teacher where address like '%oracle%';
4.不要在列上运算

         会导致索引失效而进行全表扫描

5.范围列可以使用索引

范围条件有:<、<=、>、>=、between等。

范围列可以用到索引(联合索引必须是最左前缀),但是范围列后面的列无法用到索引,索引最多用于一个范围列,如果查询条件中有两个范围列则无法全用到索引。所以where中把最主要的查询条件放在第一个。

6.类型转换会导致索引无效

当列是文本类型时,把数值类型当作列的条件会弃用索引。

explain select * from teacher where name = 20;
7.总结

索引的级别:const(主键查询) > ref > range > index(扫描全部索引) > all(全表扫描)

  1. 不要在where后的条件中进行列的运算和函数操作

  2. 模糊查询时,like‘%xxx%’,放弃使用索引二进行全表扫描。like‘xxx%’,可以使用索引索引级别为range。

  3. 类型转换会导致索引无效

 

理论上每张表里面最多可创建16个索引,不过除非是数据量真的很多,否则过多的使用索引也不是那么好玩的。

建议:一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

三、视图

1.什么是视图
  1. 视图是一种虚拟表

  2. 视图建立在已有表的基础上,视图建立依赖的这些表称为基表

  3. 向视图提供数据内容的语句为 SELECT 语句,可以将视图理解为存储起来的 SELECT 语句

  4. 视图向用户提供基表数据的另一种表现形式

2.视图的作用

简化复杂的查询

  1. 视图本身就是一条查询SQL,我们可以将一次复杂的查询构建成一张视图,用户只要查询视图就可以获取想要得到的信息(不需要再编写复杂的SQL),可以理解为查询视图就相当于将创建视图的SQL再次执行一次

  2. 视图主要就是为了简化复杂查询

 3.视图的使用
-- 创建视图
create view 视图名称 as select语句; 
-- view: 表示视图
-- as: 表示视图要执行的操作
-- select: 向视图提供数据内容
-- 查询视图和查询表一样
select * from 视图名称;
-- 删除视图
drop view 视图名称;

 4.视图与表的区别
  • 视图是建立在表的基础上,表存储数据库中的数据,而视图只是做一个数据的展示

  • 通过视图不能改变表中数据(一般情况下视图中的数据都是表中的列 经过计算得到的结果,不允许 更新)

  • 删除视图,表不受影响,而删除表,视图不再起作用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值