——本节内容为Bilibili王道考研《数据结构》P53视频内容笔记。
目录
一、相关术语
1.结点的权:有某种现实含义的数值(如:表示结点的重要性等);
2.结点的带权路径长度:从树的根到该结点的路径长度(经过的边数)与该结点上权值的乘积;
3.树的带权路径长度:树中所有叶结点的带权路径长度之和(WPL:Weighted Path Length):
二、定义
1.在含有n个带权叶结点的二叉树中,其中带权路径长度(WPL)最小的二叉树称为哈夫曼树,也称最优二叉树。
三、构造哈夫曼树
1.给定n个权值分别为w1、w2、...、wn的结点,构造哈夫曼树的算法描述如下:
(1)将这n个结点分别作为n棵仅含一个结点的二叉树,构成森林F,如图:
(2)构造一个新结点,从F中选取两棵根结点权值最小的树作为新结点的左右子树,并且将新结点的权值置为左右子树上根结点的权值之和;
(3)从F中删除刚才选中的两棵树,同时将新得到的树加入F中,如图:
(4)重复步骤(2)、(3)直至F中只剩下一棵树为止,如图:
2.构造性质:
(1)每个初始结点最终都成为叶结点,且权值越小的结点到根结点的路径长度越大;
(2)哈夫曼树的结点总数为2n-1;
(3)哈夫曼树中不存在度(子树数)为1的结点;
(4)哈夫曼树并不唯一,但WPL必然相同且为最优,比如上面的例子我们也可以构造为:
四、哈夫曼编码
1.固定长度编码:每个字符用相等长度的二进制位表示,比如:
A——0100 0001 A——00
B——0100 0010 B——01
或
C——0100 0011 C——10
D——0100 0100 D——11
2.如A——00,B——01,C——10,D——11的编码,分别给出A、B、C、D的权重为10、8、80、2。则这种编码方案我们也可以用树的形式来表达为:
3.按照刚才构造哈夫曼树的步骤,将上面的二叉树进以优化得到:
则对应的编码方案应为:
C——0
A——10
B——111
D——110
4.上面由哈夫曼树得到的即为哈夫曼编码——字符集中的每个字符作为一个叶子结点,各个字符出现的频度作为结点的权值,通过构造哈夫曼树得到;
这种编码方案也称为可变长度编码——允许对不同字符用不等长的二进制位表示;
且这种编码方案在解译的时候不会出现歧义,又称为前缀编——即没有一个编码是另一个编码的前缀;
5.哈夫曼树不唯一,因此哈夫曼编码也不唯一。