redis实战-缓存三剑客穿透击穿雪崩解决方案

缓存穿透

定义

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库,造成数据库压力,也让缓存没有发挥出应有的作用

解决方案

  • 缓存空对象

当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,这个数据即使数据库不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了,但这样缓存大量空对象也会消耗内存

  • 布隆过滤器

布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回,优点在于节约内存空间,但会存在误判,即过滤器判断该数据不存在是准确的,但判断存在时就不一定准确,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

 

解决思路

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

编码解决

由于布隆过滤器实现得较为复杂,本项目采用方案一即数据库不存在数据时直接缓存空对象,对查询商铺信息方法进行改造

 @Override
    public Result queryById(Long id) {
        //根据业务代码组装key
        String key = CACHE_SHOP_KEY + id;
        //从redis中获取商铺信息
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //判断有值的情况
        if (StrUtil.isNotBlank(shopJson)) {
            //将json转化为shop对象直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //对无值情况进行校验
        if(shopJson!=null){
            return Result.fail("店铺不存在");
        }
        Shop shop = getById(id);
        if (shop == null) {
            //将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            return Result.fail("店铺不存在");
        }
        //将数据库查询的数据写入缓存,并设置过期时间
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        //返回
        return Result.ok(shop);
    }

缓存雪崩

定义

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案

  • 给不同的Key的TTL添加随机值,使得key不会同时失效

  • 利用Redis集群提高服务的可用性

  • 给缓存业务添加降级限流策略

  • 给业务添加多级缓存

缓存击穿

定义

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。比如双十一做活动的热门商品数据

情景分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

 解决方案

  • 互斥锁

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。这一方案的好处是保证了数据的强一致性,也就是每个线程查询的数据都是最新的数据

情景分析

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

编码实现 

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询。如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,类似于mybatisplus的乐观锁,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

 锁的代码应该尽量小规模,这里只在访问数据库的时候加上互斥锁

public Shop queryWithMutex(Long id) {
        //根据业务代码组装key
        String key = CACHE_SHOP_KEY + id;
        //从redis中获取商铺信息
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //判断有值的情况
        if (StrUtil.isNotBlank(shopJson)) {
            //将json转化为shop对象直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return shop;
        }
        //对无值情况进行校验
        if (shopJson != null) {
            return null;
        }
        //拼装获取锁的key
        String lockKey = LOCK_SHOP_KEY + id;

        Shop shop = null;
        try {
            //获取锁
            boolean b = tryLock(lockKey);
            //获取锁失败要休眠然后继续重试,看缓存中是否已经被别的线程写入数据
            if (!b) {
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            shop = getById(id);
            if (shop == null) {
                //将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                return null;
            }
            //将数据库查询的数据写入缓存,并设置过期时间
            stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            unlock(lockKey);
        }
        //返回
        return shop;
    }
  • 逻辑过期方案

我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案,让热点key常驻于内存

情景分析

过期时间设置在redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个新线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁,而线程1直接进行返回数据,并不会阻塞等待,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。也就是该方案并不会像互斥锁那样,需要等待堵塞更新数据,导致性能下降,而是直接返回旧数据,但这也带来了数据的不一致性的问题。

 编码实现

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

 由于需要有逻辑过期的时间变量,需要拓展变量,这里采用redisdata的方式直接将shop封装成redisdata的成员变量,同时该对象具有过期时间这个变量

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

我们需要进行缓存预热,就是将热点key的数据提前存入redis中,这里使用单元测试将数据写入redis中,注意写入的是redisdata这个对象

 @Override
    public void saveShopToRedis(Long id, Long expireSeconds) {
        Shop show = getById(id);
        //封装redisdata
        RedisData redisData = new RedisData();
        redisData.setData(show);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
        stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
    }

 

 这里开启线程去构建新数据,采用的是开启线程池,节约资源

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){

        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

<think>好的,用户问到了关于CACHE_REBUILD_EXECUTOR.submit(() 的问题。首先,我需要确定这个代码片段的上下文和用途。看起来像是一个Java程序中使用线程池提交任务来重建缓存。用户可能遇到了相关代码,但写法有问题,比如括号不匹配或者任务逻辑不完整。 接下来,我应该分析代码结构。CACHE_REBUILD_EXECUTOR可能是一个ExecutorService实例,用于管理线程池。submit方法用来提交任务,通常是一个Runnable或Callable。用户提供的代码片段结尾有一个未闭合的括号,这可能是个笔误,应该补全lambda表达式和参数。 然后,需要解释各个部分的作用。比如,ExecutorService的作用是什么,submit方法如何提交异步任务,lambda表达式在这里创建了一个Runnable实例。同时,用户可能需要了解如何正确实现缓存重建的逻辑,比如在run方法中处理异常、使用锁防止并发重建,以及设置适当的超时和重试机制。 还需要考虑用户可能的实际需求,比如在高并发场景下,如何避免缓存击穿,或者如何确保重建任务不会重复执行。这时候,可以提到双重检查锁、异步完成标记等最佳实践。 另外,用户可能对线程池的配置有疑问,比如核心线程数、队列类型等,这些会影响系统性能和稳定性。虽然用户没有直接问到,但作为补充信息可能会有帮助。 最后,检查是否有语法错误,比如括号是否正确闭合,lambda表达式的正确写法,确保提供的示例代码正确无误。同时提醒用户在实际应用中添加日志和监控,方便问题排查。</think>关于 `CACHE_REBUILD_EXECUTOR.submit(()` 的代码片段,这是一个典型的线程池任务提交操作,主要用于异步执行缓存重建任务。以下分步骤解析: --- ### 1. **代码结构解析** - **`CACHE_REBUILD_EXECUTOR`** 通常是一个 `ExecutorService` 实例,例如: ```java private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(4); ``` 它是线程池的引用,负责管理和调度异步任务。 - **`.submit(() -> { ... })`** - `submit()` 方法用于向线程池提交任务(`Runnable` 或 `Callable`)。 - `() -> { ... }` 是 Lambda 表达式,定义了异步执行的任务逻辑。 --- ### 2. **典型应用场景** ```java CACHE_REBUILD_EXECUTOR.submit(() -> { try { // 1. 加锁防止并发重建(如分布式锁) if (lock.tryLock()) { // 2. 从数据库加载最新数据 Object newData = loadFromDB(); // 3. 更新缓存 cache.put("key", newData); } } catch (Exception e) { // 4. 异常处理与重试机制 log.error("缓存重建失败", e); } finally { // 5. 释放锁 lock.unlock(); } }); ``` --- ### 3. **关键设计要点** 1. **异步化** 通过线程池分离缓存重建与主业务流程,避免阻塞用户请求。 2. **并发控制** - 使用锁(如 `ReentrantLock` 或 Redis 分布式锁)防止多个线程同时重建缓存- 双重检查锁优化: ```java if (cache.get("key") == null) { if (lock.tryLock()) { if (cache.get("key") == null) { rebuildCache(); } } } ``` 3. **容错机制** - 异常捕获与日志记录。 - 可结合重试框架(如 Spring Retry)实现自动重试。 4. **资源隔离** 建议为缓存重建任务配置独立线程池,避免影响其他业务线程。 --- ### 4. **参数调优建议** - **线程池配置** ```java new ThreadPoolExecutor( corePoolSize, // 核心线程数(按业务负载调整) maxPoolSize, // 最大线程数 keepAliveTime, // 空闲线程存活时间 TimeUnit.SECONDS, new LinkedBlockingQueue<>(1000) // 任务队列容量 ); ``` - **超时设置** 通过 `Future.get(timeout, unit)` 避免任务长时间阻塞。 --- ### 5. **注意事项** - **Lambda 表达式闭合** 原始代码 `submit(()` 缺少闭合括号,正确写法应为: ```java CACHE_REBUILD_EXECUTOR.submit(() -> { ... }); ``` - **资源泄露** 确保在服务关闭时调用 `shutdown()` 关闭线程池。 --- ### 总结 此模式适用于高并发场景下的缓存更新,通过异步化+锁机制平衡性能与一致性。实际开发中需结合具体框架(如 Caffeine、Redis)和监控工具(如 Metrics)进行优化。
评论 250
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明矾java

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值