1、汉诺塔的来源:
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如图1)。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
2、汉诺塔的算法实现
对于汉诺塔问题,当只移动一个圆盘时,直接将圆盘从 A 针移动到 C 针,用的是hanoit(m, 'A', 'B', 'C');。若移动的圆盘为 n(n>1),则分成几步走:
1、把 (n-1) 个圆盘从 A 针移动到 B 针(借助 C 针);类比上一句中将圆盘从 A 针移动到 C 针,把 (n-1) 个圆盘从 A 针移动到 B 针,用的是hanoit(n-1,a,c,b);然后陷入递归直到n减成1。
2、A 针上的最后一个圆盘移动到 C 针;move(a,c);中的形参a和c随着递归来回变换,不断打印出每一步的圆盘在针上的移动。
3、B 针上的 (n-1) 个圆盘移动到 C 针(借助 A 针)。类比以上上,把 (n-1) 个圆盘从 B针移动到 C 针,用的是hanoit(n-1,b,a,c);然后陷入递归直到n减成1。
每做一遍,移动的圆盘少一个,逐次递减,最后当 n 为 1 时,完成整个移动过程。
3、程序实现:
#include<stdio.h>
void move(char getone, char putone)
{
printf("%c-->%c\n", getone, putone);
}
void hanoit(int n, char a, char b, char c)
{
if(n == 1)
{
move(a, c);
}
else
{
hanoit(n - 1, a, c, b);
move(a, c);
hanoit(n - 1, b, a, c);
}
}
int main()
{
int m;
printf("Please input the number of diskes:");
scanf("%d", &m);
hanoit(m, 'A', 'B', 'C');
return 0;
}
显示结果: