RSA算法(不要求支持大数)

题目描述

C++中数据的类型与长度参考:

因此,C++最大能支持的十进制是19位的整数。如果要支持更大的整数,需要实现Big Number类。RSA目前比较安全的密钥长度是2048位二进制,即是617位的十进制。因此,C++自带的数据类型无法实现安全的RSA密钥加解密。

为了降低难度,该题不要求实现大数支持,因此只使用C++自带的long long 数据类型。

该实验主要包含三部分:1. 公私钥的生成。在公私钥生成中,有p、q、e三个参数是随机选择的,其中p、q要求是质数,因此需要实现一个函数检查一个整数是否是质数。由p、q的乘积可以得到n:n=p*q,以及n的欧拉函数: φ(n) = (p-1)*(q-1)。e是在(1, φ(n))之间随机选取的整数,需要满足gcd(e, φ(n)) = 1,因此,需要通过扩展欧几里得算法验证取得的e是与φ(n)互质的。d可以通过扩展欧几里得算法求得 。以满足,即。

公钥为(n, e),私钥为(n,d)

检查一个整数是否为质数-Rabin-Miller算法,请参考:Miller-Rabin素性测试算法详解_Nicetomeetu-的博客-CSDN博客_millerrabin素数测试算法Miller Rabin算法详解 - 自为风月马前卒 - 博客园BZOJ3667: Rabin-Miller算法 - 自为风月马前卒 - 博客园

扩展欧几里得算法:请参考:【算法学习】扩展欧几里得算法详解及C++代码实现_行仔ovo的博客-CSDN博客_欧几里得算法c++

2. 加密过程,使用加密算法c = m^e mod n,计算出密文c;

3.解密过程,使用私钥d和解密算法m = c^d mod n, ,计算m;

加密和解密过程需要做幂运算取余,如果直接先做幂运算再取余,则很容易出现溢出,因此,我们需要采用快速幂运算取余算法,请参考:https://jlice.top/p/7tbs7/

因此,该次实验主要难点在于以下三个算法的理解与实现:

1. Rabin-Miller算法

2. 扩展欧几里得算法

3. 快速幂取余算法

根据前面的算法,我们知道明文和密文都不能大于n,假设n的长度为L,对于明文,我们需要按照L-1的长度对其分组然后再加密,每组的密文长度L。解密的时候使用L的长度对其进行分组然后解密,每组的明文长度为L-1。分组按照整数从低到高(即从右往左)

输入

第一行是p

第二行是q

第三行是e

第四行是待加密数据

第五行是待解密数据

输出

第一行输出p是否是质数

第二行输出q是否是质数

第三行打印n

第四行打印d

第五行显示输入第四行的加密结果

第六行显示输入第五行的解密结果

输入样例1

67
43
13
281
2154

输出样例1

Yes
Yes
2881
853
325
54 

 AC代码

#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;

ll mod_mul(ll a, ll b, ll mod)
{
    ll res = 0;
    while (b)
    {
        if (b & 1)
            res = (res + a) % mod;
        a = (a + a) % mod;
        b >>= 1;
    }
    return res;
}

ll mod_pow(ll a, ll n, ll mod)
{
    ll res = 1;
    while (n)
    {
        if (n & 1)
            res = mod_mul(res, a, mod);
        a = mod_mul(a, a, mod);
        n >>= 1;
    }
    return res;
}

// Miller-Rabin随机算法检测n是否为素数
bool Miller_Rabin(ll n)
{
    if (n == 2)
        return true;
    if (n < 2 || !(n & 1))
        return false;
    ll m = n - 1, k = 0;
    while (!(m & 1))
    {
        k++;
        m >>= 1;
    }
    for (int i = 1; i <= 20; i++)  // 20为Miller-Rabin测试的迭代次数
    {
        ll a = rand() % (n - 1) + 1;
        ll x = mod_pow(a, m, n);
        ll y;
        for (int j = 1; j <= k; j++)
        {
            y = mod_mul(x, x, n);
            if (y == 1 && x != 1 && x != n - 1)
                return false;
            x = y;
        }
        if (y != 1)
            return false;
    }
    return true;
}

//扩展欧几里得算法
void extend_gcd(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1, y = 0;
        return;
    }
    extend_gcd(b, a % b, x, y);
    long long tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}
long long getInv(long long a, long long mod) {
    long long x, y;
    extend_gcd(a, mod, x, y);
    while (x < 0) {
        x = x + mod;
    }
    return x;
}

//快速幂运算取余算法
ll qiumi(ll a, ll b, ll m)
{
    int r = 1 % m;
    while (b)
    {
        if (b & 1)
            r= r * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return r;
}

ll jiami(ll m,ll e,ll n)
{
    int len_n = 0, len_m = 0, t;
    //计算n的长度
    t = n;
    while (t)
    {
        t = t / 10;
        len_n++;
    }
    //计算明文的长度
    t = m;
    while (t)
    {
        t = t / 10;
        len_m++;
    }

    ll ans = 0;
    if (len_m > len_n)      
    {
        ll right =0,  left = 0;
        int t = pow(10, len_n - 1);
        right = m % t;          //分组
        left = (m - right)/t;
        right = qiumi(right, e, n);     //分组加密
        left = qiumi(left, e, n);
        ans = left * pow(10, len_n) + right;
    }
    else
    {
        ans = qiumi(m, e, n);
    }
    return ans;
}

ll jiemi(ll c, ll d, ll n)
{
    int len_n = 0, len_c = 0, t;
    //计算n的长度
    t = n;
    while (t)
    {
        t = t / 10;
        len_n++;
    }
    //计算密文的长度
    t = c;
    while (t)
    {
        t = t / 10;
        len_c++;
    }

    ll ans = 0;
    if (len_c > len_n)
    {
        ll right = 0, left = 0;
        int t = pow(10, len_n);
        right = c % t;           //分组
        left = (c - right)/t;
        right = qiumi(right, d, n);      //分组解密
        left = qiumi(left, d, n);
        ans = left * pow(10, len_n-1) + right;
    }
    else
    {
        ans = qiumi(c, d, n);
    }
    return ans;
}

int main()
{
    ll p, q, e, n, m, c, fn, d, m1, c1;;
	cin >> p >> q >> e >> m >> c;

    //判断p、q是否为质数
    if (Miller_Rabin(p))
        cout << "Yes" << endl;
    if (Miller_Rabin(q))
        cout << "Yes" << endl;

    //计算n和fn;
    if (Miller_Rabin(p) && Miller_Rabin(q))
    {
        n = p * q;
        fn = (p - 1) * (q - 1);
    }
    cout << n << endl;

    //用扩展欧几里得算法求d
    d = getInv(e, fn);
    cout << d << endl;

    //加密
    c1 = jiami(m, e, n);
    cout << c1 << endl;
    //解密
    m1 = jiemi(c, d, n);
    cout << m1 << endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值