自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 推荐系统—用户历史行为序列建模

这种建模方式可以适用于召回的双塔模型,粗拍的三塔模型以及精排模型。

2025-08-04 19:32:28 126

原创 推荐系统-召回层

优化A和B的参数矩阵:采用SGD来优化MSE损失函数,每一次优化A和B的一列,训练完之后,再用训练好的矩阵计算最近邻的其他未曝光的物品的兴趣分数。线上召回:根据用户id和用户画像,当场计算一个用户的表征向量,根据最近邻查找获取余弦值最大的前k个和其他的召回通道排序后,返回前x个给用户。矩阵补充的内容:一个矩阵记录着每一个用户对每一个物品的兴趣分数,行代表用户,列代表物品,根据每一行的最大值来给用户推荐物品。b.根据物品和物品之间的相似度(余弦夹角),建立物品到物品的索引值,返回top-k。

2025-08-03 09:30:05 613

原创 推荐系统-排序

对预估分数值,进行校准后再进行排序和截断。为什么需要校准分数?因为正,负样本的数量差别太大,需要对负样本进行降采样。负样本表示曝光了未交互的笔记。如何校准分数?

2025-08-03 09:29:34 253

原创 推荐算法入门—参考王树森

重排:使用多样性抽样,以笔记多样性和金牌兴趣分数为参照,打乱曝光给用户,进入转化流程。目的:判断在离线实验新的策略对业务指标的影响,优化策略和模型。实验流程:离线实验,小流量AB测试,全流量测试。粗排:筛选数据,使用小型的神经网络来给笔记打分。流程:随机分桶-分层实验(解决流量不足的问题)精排:使用规模更大的神经网络模型来给笔记打分。消费指标:用户使用时长,阅读量。反转实验:用来解决指标的滞留性。

2025-07-30 19:25:25 95

原创 strncpy,strncat

注意和strcpy一致,限定传入的长度。//结果有些不同,不一定会把'\0'传进来,会承接原来的字符。//返回s2的连续字符在s1中第一次出现的地址。//保证目标地址空间够大。

2025-03-08 18:51:52 423

原创 c++ 字符数组库函数的模拟

/strcpy的实现 char* strcpy(char* destination,const char* str)实现将str的内容拷贝到des中。//strcat追加函数 char* strcat(char* str1,const char* str2)//4.strcpy会在拷贝完毕后,把'\0'也拷贝过来,就有效的决定了str1的长度。//2.char* str="wcwc",是定义了一个指针,str存储的是地址。if(*s1=='\0')//此时都为空,表示完全相同。}//此时s1指向空。

2025-03-07 18:23:01 290

原创 验证和训练

train_batch_loss.backward() 反向回传,计算梯度值,保存在grad中。optimizer.step() 更新参数。plt.title("title图“)

2025-01-06 16:21:17 272

原创 深度学习———模型

维度变换,linear(全连接) linear(100,1),linear(100,1000),linear(1000,520),linear(520,10),linear(10,1)self.fc1=nn.Linear(indim,64) 定义了两个全连接层,还有一个激活函数relu。if(len(x.size())>1: 由于y是(64,) 一维张量。x=self.fc2(x) linear(64,1) 二维张量。

2025-01-06 14:03:57 249

原创 深度学习——数据处理部分

涉及到python的两种切片方式,list[1:] 表示输出从第二个元素到最后一个元素,np.array()[:,1:] 表示输出数组的所有行,和从第二列到最后一列的元素,astype(float)把数据转换为浮点型。self.y=torch.tensor(csv_data[indices:-1]) 第三种切片方式,跳着切,indices是目标行,和最后一列(倒着)ori_data=list(csv.reader(f)) csv.reader()是读取数据的方法,转换成列表,方便读取。

2025-01-05 22:41:18 538

原创 深度学习——线性表示

for batch_x,batch_y in data_provider(x,y,batchsize): 分批次的处理数据,batch_x,batch_y就是训练的x和真实的y。x(feature),根据高斯分布公式随机生成x,avr=0,std=1,x的形状(data_num,len(w)),data_num是生成的x个数,len(w)是x的属性个数.x,y=create_data(true_w,true_b,num) 调用函数creat_data。y=torch.matmul(x,w)+b 标签。

2025-01-04 23:12:44 873 2

InsertValueSearch.java

InsertValueSearch.java

2023-03-11

CarrotFantasy_UIConfig.dll

CarrotFantasy_UIConfig.dll

2023-03-11

HashTabDemo.java

HashTabDemo.java

2023-03-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除