- 博客(10)
- 收藏
- 关注
原创 推荐系统-召回层
优化A和B的参数矩阵:采用SGD来优化MSE损失函数,每一次优化A和B的一列,训练完之后,再用训练好的矩阵计算最近邻的其他未曝光的物品的兴趣分数。线上召回:根据用户id和用户画像,当场计算一个用户的表征向量,根据最近邻查找获取余弦值最大的前k个和其他的召回通道排序后,返回前x个给用户。矩阵补充的内容:一个矩阵记录着每一个用户对每一个物品的兴趣分数,行代表用户,列代表物品,根据每一行的最大值来给用户推荐物品。b.根据物品和物品之间的相似度(余弦夹角),建立物品到物品的索引值,返回top-k。
2025-08-03 09:30:05
613
原创 推荐系统-排序
对预估分数值,进行校准后再进行排序和截断。为什么需要校准分数?因为正,负样本的数量差别太大,需要对负样本进行降采样。负样本表示曝光了未交互的笔记。如何校准分数?
2025-08-03 09:29:34
253
原创 推荐算法入门—参考王树森
重排:使用多样性抽样,以笔记多样性和金牌兴趣分数为参照,打乱曝光给用户,进入转化流程。目的:判断在离线实验新的策略对业务指标的影响,优化策略和模型。实验流程:离线实验,小流量AB测试,全流量测试。粗排:筛选数据,使用小型的神经网络来给笔记打分。流程:随机分桶-分层实验(解决流量不足的问题)精排:使用规模更大的神经网络模型来给笔记打分。消费指标:用户使用时长,阅读量。反转实验:用来解决指标的滞留性。
2025-07-30 19:25:25
95
原创 strncpy,strncat
注意和strcpy一致,限定传入的长度。//结果有些不同,不一定会把'\0'传进来,会承接原来的字符。//返回s2的连续字符在s1中第一次出现的地址。//保证目标地址空间够大。
2025-03-08 18:51:52
423
原创 c++ 字符数组库函数的模拟
/strcpy的实现 char* strcpy(char* destination,const char* str)实现将str的内容拷贝到des中。//strcat追加函数 char* strcat(char* str1,const char* str2)//4.strcpy会在拷贝完毕后,把'\0'也拷贝过来,就有效的决定了str1的长度。//2.char* str="wcwc",是定义了一个指针,str存储的是地址。if(*s1=='\0')//此时都为空,表示完全相同。}//此时s1指向空。
2025-03-07 18:23:01
290
原创 验证和训练
train_batch_loss.backward() 反向回传,计算梯度值,保存在grad中。optimizer.step() 更新参数。plt.title("title图“)
2025-01-06 16:21:17
272
原创 深度学习———模型
维度变换,linear(全连接) linear(100,1),linear(100,1000),linear(1000,520),linear(520,10),linear(10,1)self.fc1=nn.Linear(indim,64) 定义了两个全连接层,还有一个激活函数relu。if(len(x.size())>1: 由于y是(64,) 一维张量。x=self.fc2(x) linear(64,1) 二维张量。
2025-01-06 14:03:57
249
原创 深度学习——数据处理部分
涉及到python的两种切片方式,list[1:] 表示输出从第二个元素到最后一个元素,np.array()[:,1:] 表示输出数组的所有行,和从第二列到最后一列的元素,astype(float)把数据转换为浮点型。self.y=torch.tensor(csv_data[indices:-1]) 第三种切片方式,跳着切,indices是目标行,和最后一列(倒着)ori_data=list(csv.reader(f)) csv.reader()是读取数据的方法,转换成列表,方便读取。
2025-01-05 22:41:18
538
原创 深度学习——线性表示
for batch_x,batch_y in data_provider(x,y,batchsize): 分批次的处理数据,batch_x,batch_y就是训练的x和真实的y。x(feature),根据高斯分布公式随机生成x,avr=0,std=1,x的形状(data_num,len(w)),data_num是生成的x个数,len(w)是x的属性个数.x,y=create_data(true_w,true_b,num) 调用函数creat_data。y=torch.matmul(x,w)+b 标签。
2025-01-04 23:12:44
873
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人