2023-3-29 刷题情况

最短公共超序列

思路

可以化作相同类型的子问题,可使用动态规划,但实现起来会比较麻烦,其较为复杂,dp数组中不是很明确的能够确定一种类型。这题较为麻烦且复杂,我从最开始的递归开始学习。

代码实现

暴力递归

超出时间限制

class Solution {
    public String shortestCommonSupersequence(String str1, String str2) {
        if(str1.isEmpty()) return str2;
        if(str2.isEmpty()) return str1;
        var s1 = str1.substring(0, str1.length()-1);
        var s2 = str2.substring(0, str2.length()-1);
        var x = str1.charAt(str1.length()-1);
        var y = str2.charAt(str2.length()-1);
        if(x == y)
            return shortestCommonSupersequence(s1, s2) + x;
        var ans1 = shortestCommonSupersequence(s1, str2);
        var ans2 = shortestCommonSupersequence(str1, s2);
        if(ans1.length() < ans2.length())
            return ans1 + x;
        return ans2 + y;
    }
}

记忆化搜索

超出空间限制优化了时间,但是超出空间限制

class Solution {
    private String s, t;
    private String[][] dir;

    public String shortestCommonSupersequence(String str1, String str2) {
        s = str1;
        t = str2;
        dir = new String[s.length()][t.length()];
        return dfs(s.length() - 1, t.length() - 1);
    }

    private String dfs(int i, int j){
        if(i < 0) return t.substring(0, j + 1);
        if(j < 0) return s.substring(0, i + 1);
        if(dir[i][j] != null) return dir[i][j];
        if(s.charAt(i) == t.charAt(j))
            return dir[i][j] = dfs(i - 1, j - 1) + s.charAt(i);
        var ans1 = dfs(i - 1, j);
        var ans2 = dfs(i, j - 1);
        if(ans1.length() < ans2.length())
            return dir[i][j] = ans1 + s.charAt(i);
        return dir[i][j] = ans2 + t.charAt(j);
    }
}

优化后的记忆化

因为使用string数组会超出空间限制,所以记忆化数组中,就不能够存放string类型,不过只存放最长字序列长度也是可以的。

class Solution {
    private String s, t;
    private int[][] dir;

    public String shortestCommonSupersequence(String str1, String str2) {
        s = str1;
        t = str2;
        dir = new int[s.length()][t.length()];
        dfs(s.length() - 1, t.length() - 1);
        return answer(s.length() - 1, t.length() - 1);
    }

    private int dfs(int i, int j){
        if(i < 0) return j + 1;
        if(j < 0) return i + 1;
        if(dir[i][j] > 0) return dir[i][j];
        if(s.charAt(i) == t.charAt(j))
            return dir[i][j] = dfs(i - 1, j - 1) + 1;
        return dir[i][j] = Math.min(dfs(i-1, j), dfs(i, j-1)) + 1;
    }

    private String answer(int i, int j){
        if(i < 0) return t.substring(0, j + 1);
        if(j < 0) return s.substring(0, i + 1);
        if(s.charAt(i) == t.charAt(j))
            return answer(i - 1, j - 1) + s.charAt(i);
        if(dfs(i, j - 1) < dfs(i - 1, j))
            return answer(i, j - 1) + t.charAt(j);
        return answer(i - 1, j) + s.charAt(i);
    }
}

动态规划(递推)

class Solution {
    public String shortestCommonSupersequence(String str1, String str2) {
        char[] s = str1.toCharArray();
        char[] t = str2.toCharArray();
        int n = s.length, m = t.length;
        var f = new int[n + 1][m + 1];
        // f[i][j]表示字符串 s 以 s[i] 为结尾,t 以 t[j] 结尾的最短公共超序列长度
        for(int i = 1; i < m; i++) f[0][i] = i;
        for(int i = 1; i < n; i++) f[i][0] = i;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
                if(s[i] == t[j])
                    f[i + 1][j + 1] = f[i][j] + 1;
                else
                    f[i+1][j+1] = Math.min(f[i+1][j], f[i][j+1]) + 1; 
        
        int mx = f[n][m];
        var ans = new char[mx];
        for(int i = n-1, j = m-1, k = mx-1; ; ){
            if(i < 0){
                System.arraycopy(t, 0, ans, 0, j + 1);
                break;
            }
            if(j < 0){
                System.arraycopy(s, 0, ans, 0, i + 1);
                break;
            }
            if(s[i] == t[j]){
                ans[k--] += s[i--];
                j--;
            }else if(f[i + 1][j + 1] == f[i][j + 1] + 1){
                ans[k--] += s[i--];
            }else{
                ans[k--] += t[j--];
            }
        }
        return new String(ans);
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值