- 博客(8)
- 收藏
- 关注
原创 关于方向导数和梯度你真的懂了吗?
文章目录前言一、空间曲线的切线与法平面二、使用步骤1.引入库2.读入数据总结前言方向导数和梯度是多元函数微分学中两个非常抽象的概念,如果对它们没有深刻的理解,那么就会感觉非常晦涩难懂,今天我们来对二者进行一个剖析和总结。在介绍方向导数和梯度之前,我们先回顾两个知识点:空间曲线的切线与法平面、曲面的切平面与法线。一、空间曲线的切线与法平面若空间曲线Γ\varGammaΓ的方程为{x=φ(t),y=ψ(t),z=ω(t),t∈[α,β]\left\{ \begin{array}{l} x
2022-04-08 16:58:08
1142
原创 【数据结构】伪链表的增、删、改
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可
2022-03-30 20:30:21
1136
原创 空间解析几何中那些图形和方程(大彻大悟版)
文章目录前言一、平面及其方程二、使用步骤1.引入库2.读入数据总结前言说来让人唏嘘,学个空间解析几何快把自己弄没了,空间中有平面及其方程、空间直线及其方程、曲面及其方程、空间曲线及其方程,可唯独就是容不下我,实在令人痛心,所以要下定决心把它们区分清楚!!!一、平面及其方程平面的点法式方程已知平面上一点M0(x0,y0,z0)M_0\left( x_0,y_0,z_0 \right) M0(x0,y0,z0)平面的一个法向量n⃗=(A,B,C)\vec{n}=\left
2022-03-28 08:10:09
26103
9
原创 空间中常见曲面图形的绘制(matlab)
%%%旋转单叶双曲面%%颜色可以自行调整a=2;c=1;phi=0:0.1:2*pi+0.1;theta=(-1:0.1:1)';x=a*cosh(theta)*cos(phi);y=a*cosh(theta)*sin(phi);z=c*sinh(theta)*ones(size(phi));figuresurf(x,y,z)alpha(0.5)xlabel('x轴')ylabel('y轴')zlabel('z轴')shading interpline([0,0],[0,0]
2022-03-28 08:05:41
5653
原创 还在为矢量代数感到烦恼?(点这个吧)
文章目录一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结一、向量及其线性运算向量的加减法(三角形法则)加法是两个向量首尾相连,如向量a和向量b,然后和向量由第一个向量的头指向第二个向量的尾二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as...
2022-03-24 22:11:10
1837
原创 【数据结构】伪链表的链接和遍历(思路才是精华,别错过)
文章目录一、链表的创建二、结构体元素初始化三、将元素连接起来四、接下来打印一下四个元素对应的值总结一、链表的创建首先我们要定义一个结构体,结构体中有两个元素:一个是当前节点的数据,另一个是下一个节点的地址(注意下一个节点的地址是结构体指针类型)struct Code{ int data; struct Code* pnext;};二、结构体元素初始化在这里只定义四个结构体变量,使得在接下来的操作中更易于理解struct Code a = {1,NULL}, b = {2
2022-03-17 21:40:25
771
1
原创 【数据结构】这么简单的动态数组操作,你确定不看看吗?
前言空间按照类型可分为栈区空间和堆区空间,栈区空间有系统自动管理而堆区空间由程序员进行操作和管理;栈区空间需要时系统自动分配使用完后自动回收,堆区空间在程序员使用时通过malloc申请,使用完成后通过free释放。一、定义一个结构体struct dynamic_array{ unsigned int capacity; unsigned int num; int *pHead;}二、结构体初始化函数void init(struct dynamic_array *pst_arr){
2022-03-16 17:38:19
441
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人