1. 百科:
杨辉三角,又称贾宪三角形,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。在欧洲,帕斯卡在1654年发现这一规律,所以这个表又叫做帕斯卡三角形。帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。
它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
如图所示:
- 每行端点与结尾的数为1。
- 每个数等于它上方两数之和。
- 第n行的数字有n项。
- 每行数字左右对称
2. 编程实现
2.1 借助一个二维数组存放杨辉三角中的每个数。
打印直角三角形的形状:
#include <stdio.h>
int main() {
int n = 0;
scanf("%d", &n);
int arr[100][100] = { 0 };
int i = 0;
for (i = 0; i < n; i++) {
int j = 0;
for (j = 0; j < n ; j++) {
if (i == j || j == 0) {
arr[i][j] = 1;
}
else {
arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
}
if (i >= j) {
printf("%3d ", arr[i][j]);
}
}
printf("\n");
}
return 0;
}
运行结果:
2.2 打印等腰三角形的形状:
#include <stdio.h>
int main() {
int n = 0;
scanf("%d", &n);
int arr[100][100] = { 0 };
int i = 0;
for (i = 0; i < n; i++) {
int j = 0;
for (j = 0; j < n; j++) {
if (i == j || j == 0) {
arr[i][j] = 1;
}
else {
arr[i][j] = arr[i - 1][j] + arr[i - 1][j - 1];
}
}
}
int j = 0;
/*for (i = 0; i < n; i++) {
for (j = 0; j < n - 1 - i; j++) {
printf(" ");
}
for (j = 0; j <= i; j++) {
printf("%5d ", arr[i][j]);
}
printf("\n");
}*/
for (i = 0; i < n; i++) {
//对于每一行,先打印空格再打印数据
for (j = 0; j < n - 1 - i; j++) {
printf(" ");
}
for (j = 0; j <= i; j++) {
printf("%3d ", arr[i][j]);
}
printf("\n");
}
return 0;
}
运行结果:
//
2.3 另一种思路
看成是长为n,宽为2*n-1的矩阵。初始化
n*(2*n-1)
个矩阵元素为0。
对应元素符合判断条件就进行相关操作。
外围的1可以分成左半边矩形副对角线部分与右半边矩形主对角线部分。
在内围的有效范围是(n-1-i) ~ (n-1+i)
对于有小范围内的位置进行操作:左上位置数据与右上位置数据之和
#include <stdio.h>
int main() {
int n = 0;
scanf("%d", &n);
int arr[30][30] = { 0 };
int i = 0;
for (i = 0; i < n; i++) {
int j = 0;
for (j = 0; j < 2 * n - 1; j++) {
if (i + j == n - 1 && j<=n-1) {
arr[i][j] = 1;
}
if (i == j - (n - 1) && j > n-1) {
arr[i][j] = 1;
}
if (j > n - 1 - i && j < n - 1 + i && i>=1) {
/*if (i % 2 == j % 2) {
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j + 1];
}*/
arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j + 1];
}
}
}
for (i = 0; i < n; i++) {
int j = 0;
for (j = 0; j < 2 * n - 1; j++) {
if (arr[i][j] != 0) {
printf("%3d", arr[i][j]);
}
else {
printf(" ");
}
//printf("%3d", arr[i][j]);
}
printf("\n");
}
return 0;
}
运行结果:
END