目录
2.0 解法
循环
数组+函数调用
3.0 总结
上一篇 文章目录没搞好 这一次又没搞好 我是傻逼
1.0【问题描述】
给定一个精度值e,用下列公式计算π的近似值,要求前后两次π的迭代之差的绝对值小于e,给出相应的最小迭代次数n和最后一次计算的π的值。
π/2=1+1!/3+2!/(3×5)+3!/(3×5×7)+…+(n-1)!/(3×5×7×…×(2n-1))
【输入形式】
从控制台输入e( e>=0.000001 )的值。
【输出形式】
输出迭代次数n和最后一次计算的π的值(以一个空格分隔,并且输出π时要求小数点后保留7位有效数字)。
【样例输入】
0.000003
【样例输出】
19 3.1415912
【样例说明】
输入的精度e为0.000003,当n为17时,计算的π值为3.1415864,n为18时计算的π值为3.1415896,