[LeetCode #11] 盛最多水的容器

目录

题目描述:

解题思路:

解题代码:


题目描述:

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]
输出:1

提示:

  • n == height.length
  • 2 <= n <= 105
  • 0 <= height[i] <= 104

解题思路:

两个指针,分别指向最左边和最右边的元素,此时容积V = min(left, right) * (left, right),如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:

  • 容器的宽度⼀定变⼩。
  • 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
  • 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。
由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以 left++ 跳过这个边界,继续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到 left right 相遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案。

解题代码:

C++:

class Solution {
public:
    int maxArea(vector<int>& height) {
        int left = 0, right = height.size() - 1, ret = 0;
        while (left < right) {
            // 计算当前容积
            int v = min(height[left], height[right]) * (right - left);
            ret = max(v, ret);

            // 移动高度较小的那个指针
            if (height[left] < height[right]) { ++left; }
            else { --right; }
        }
        return ret;
    }
};

Java:

class Solution {
    public int maxArea(int[] height) {
        int left = 0, right = height.length - 1, ret = 0;
        while (left < right) {
            // 计算当前容积
            int v = Math.min(height[left], height[right]) * (right - left);
            ret = Math.max(v, ret);

            // 移动高度较小的那个指针
            if (height[left] < height[right]) { ++left; }
            else { --right; }
        }
        return ret;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福楠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值