目录
题目描述:
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1] 输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解题思路:
两个指针,分别指向最左边和最右边的元素,此时容积V = min(left, right) * (left, right),如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:
- 容器的宽度⼀定变⼩。
- 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
- 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。
由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以
left++
跳过这个边界,继续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到
left
与
right
相遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案。
解题代码:
C++:
class Solution {
public:
int maxArea(vector<int>& height) {
int left = 0, right = height.size() - 1, ret = 0;
while (left < right) {
// 计算当前容积
int v = min(height[left], height[right]) * (right - left);
ret = max(v, ret);
// 移动高度较小的那个指针
if (height[left] < height[right]) { ++left; }
else { --right; }
}
return ret;
}
};
Java:
class Solution {
public int maxArea(int[] height) {
int left = 0, right = height.length - 1, ret = 0;
while (left < right) {
// 计算当前容积
int v = Math.min(height[left], height[right]) * (right - left);
ret = Math.max(v, ret);
// 移动高度较小的那个指针
if (height[left] < height[right]) { ++left; }
else { --right; }
}
return ret;
}
}