目录
题目描述:
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请
你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
题目地址:
解题思路:
先进行排序,利用排序后的单调性,先从最左边开始固定一个值,再利用双指针进行碰撞求和
解题代码:
C++:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ret;
// 1. 排序
sort(nums.begin(), nums.end());
// 2. 利用双指针进行碰撞
int n = nums.size();
for (int i = 0; i < n; ) {
// 排完序后,后面的元素不会有小于0的,所以三数之和大于0
if (nums[i] > 0) { break; }
int left = i + 1, right = n - 1, target = -nums[i];
while (left < right) {
int sum = nums[left] + nums[right];
if (sum > target) {
// 右指针向左移,减小sum的值
--right;
}
else if (sum < target) {
// 左指针向右移,增大sum的值
++left;
}
else {
// 保存结果
ret.push_back({nums[i], nums[left], nums[right]});
++left;
--right;
// 去重
while (left < right && nums[left-1] == nums[left]) { ++left; }
while (left < right && nums[right+1] == nums[right]) { --right; }
}
}
++i;
// 去重
while (i < n && nums[i-1] == nums[i]) { ++i; }
}
return ret;
}
};
Java:
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> ret = new ArrayList<>();
// 1. 排序
Arrays.sort(nums);
// 2. 利用双指针进行碰撞
int n = nums.length;
for (int i = 0; i < n; ) {
// 排完序后,后面的元素不会有小于0的,所以三数之和大于0
if (nums[i] > 0) { break; }
int left = i + 1, right = n - 1, target = -nums[i];
while (left < right) {
int sum = nums[left] + nums[right];
if (sum > target) {
// 右指针向左移,减小sum的值
--right;
}
else if (sum < target) {
// 左指针向右移,增大sum的值
++left;
}
else {
// 保存结果
ret.add(new ArrayList<Integer>(Arrays.asList(nums[i], nums[left], nums[right])));
++left;
--right;
// 去重
while (left < right && nums[left-1] == nums[left]) { ++left; }
while (left < right && nums[right+1] == nums[right]) { --right; }
}
}
++i;
// 去重
while (i < n && nums[i-1] == nums[i]) { ++i; }
}
return ret;
}
}