transforms.Compose()

官方文档 : 点击跳转

作用

torchvision.transforms.Compose() 的作用是将多个图像转换操作组合在一起,它接受一个transforms列表作为参数,该列表包含要组合的转换操作,使用方式类似如下:

from torchvision.transforms import transforms
from PIL import Image


my_transform = transforms.Compose([transforms.RandomResizedCrop(224),
                                   transforms.RandomHorizontalFlip(),
                                   transforms.ToTensor(),
                                   transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                                        std=[0.229, 0.224, 0.225])])
original_img = Image.open("./image.jpg")
img = my_transform(original_img)
  • 上面例子中,我们让图像依次经过 RandomResizedCrop --> RandomHorizontalFlip --> ToTensor --> Normalize 的处理

  • 我们在生成 transforms.Compose() 的对象 my_transform 之后,直接调用 my_transform(original_img) 即可处理图像。 而一般类的使用,是需要用对象调用方法来实现功能的,比如: obj.add(a, b) 。 而我们可以直接调用my_transform对象,不需调用方法,直接将 参数(数据) 传给对象,就能实现图像处理的功能,这是因为 transforms.Compose 的内部使用了 __call__ 方法,我们继续先看下面的内部实现


内部实现

torchvision.transforms.Compose() 的内部实现如下:

class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img
  • 还不了解 __call__ 方法的使用,请查看这里

  • 之后,在学习自定义 transforms的时候,是需要重写torchvision.transforms.Compose()的,就需要在上面的内部实现代码基础上,做一些修改。


拓展延伸

1、 为什么我们能直接调用 模型对象,并传入参数: model(input) ,就直接实现 forward 方法中的功能呢 ?为什么不需要调用 forward 方法呢 ?

nn.Module 类中,实现了__call__方法,然后,在 __call__ 方法中调用的 forward方法

def __call__(self, *input, **kwargs):
    return self.forward(*input, **kwargs)

所以,我们在生使用 model(input) 的时候,调用的是 nn.Module 类中的 __call__(input) 方法,然后在 __call__(input) 方法中,又调用的我们自己写的 forward 方法

2、torch.nn.Sequential()torchvision.transforms.Compose()的内部实现 以及使用方式是很类似的,都是将输入的一连串操作一个一个的迭代出来,并且按照顺序进行使用。

torch.nn.Sequential() 的内部实现:

class Sequential(Module):
    def __init__(self, *args):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    
    def forward(self, input):
        for module in self:
            input = module(input)
        return input

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值