深度学习入门:从全连接网络到Transformer架构

引言:从感知机到深度学习的范式革命

1958年,Frank Rosenblatt提出的感知机模型拉开了神经网络研究的序幕。然而直到2012年AlexNet在ImageNet竞赛中取得突破,深度学习才真正进入黄金时代。本文将带您系统梳理深度学习架构的演进路径,通过PyTorch实战掌握Transformer核心原理。

 

 第一部分:全连接网络(Fully Connected Networks)

 

 1.1 基础原理

全连接网络由输入层、隐藏层和输出层构成,每层神经元与相邻层全部连接。数学表达式为:

$$a^{l} = f(W^{l}a^{l-1} + b^{l})$$

其中$f$为激活函数,常用ReLU解决梯度消失问题。

 

代码示例:PyTorch基础网络搭建

python

import torch.nn as nn

 

class FCNet(nn.Module):

    def __init__(self, input_size, hidden_size, num_classes):

        super().__init__()

        self.fc1 = nn.Linear(input_size, hidden_size)

        self.relu = nn.ReLU()

        self.fc2 = nn.Linear(hidden_size, num_classes)

    

    def forward(self, x):

        out = self.fc1(x)

        out = self.relu(out)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值