引言:从感知机到深度学习的范式革命
1958年,Frank Rosenblatt提出的感知机模型拉开了神经网络研究的序幕。然而直到2012年AlexNet在ImageNet竞赛中取得突破,深度学习才真正进入黄金时代。本文将带您系统梳理深度学习架构的演进路径,通过PyTorch实战掌握Transformer核心原理。
第一部分:全连接网络(Fully Connected Networks)
1.1 基础原理
全连接网络由输入层、隐藏层和输出层构成,每层神经元与相邻层全部连接。数学表达式为:
$$a^{l} = f(W^{l}a^{l-1} + b^{l})$$
其中$f$为激活函数,常用ReLU解决梯度消失问题。
代码示例:PyTorch基础网络搭建
python
import torch.nn as nn
class FCNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)