一、算法审计的"形式主义陷阱"
1.1 审计指标的空心化
表面合规指标 vs 实际风险:
审计维度 企业申报值 实际运行值
人群公平性 FPR差异<1% FPR差异达8.7%
模型可解释性 SHAP值覆盖率95% 关键特征被刻意屏蔽
数据偏差修正 声称消除性别因素 隐式编码年龄代理变量
代码级操控示例:
# 审计时启用的"影子公平模块"
def audit_mode_shap(model, data):
# 选择性计算部分特征的SHAP值
explainer = SHAPTreeExplainer(model.masked_model)
return explainer.shap_values(data[allowed_features])
# 生产环境使用的完整模型
def real_time_predict(model, data):
return model.full_model.predict(preprocess(data))
1.2 对抗性审计的监管套利
动态检测规避技术:
1. 检测窗口期操控:仅在审计期间启用公平性约束
2. 特征漂移伪装:向审计方提供经过重采样的"清洁数据集"
3. 模型版本混淆:部署审计版与生产版双模型架构
对抗检测实验:
# 审计方使用的公平性检测工具
from aif360.sklearn.detectors import BiasDetectionScanner
scanner = BiasDetectionScanner(
privileged_groups