算法审计的黑暗面:监管科技如何异化为合规套利

 

一、算法审计的"形式主义陷阱"

1.1 审计指标的空心化

表面合规指标 vs 实际风险:

审计维度          企业申报值       实际运行值
人群公平性    FPR差异<1%    FPR差异达8.7%
模型可解释性    SHAP值覆盖率95%    关键特征被刻意屏蔽
数据偏差修正    声称消除性别因素    隐式编码年龄代理变量

代码级操控示例:

# 审计时启用的"影子公平模块"
def audit_mode_shap(model, data):
    # 选择性计算部分特征的SHAP值
    explainer = SHAPTreeExplainer(model.masked_model) 
    return explainer.shap_values(data[allowed_features])

# 生产环境使用的完整模型
def real_time_predict(model, data):
    return model.full_model.predict(preprocess(data))


1.2 对抗性审计的监管套利

动态检测规避技术:

1. 检测窗口期操控:仅在审计期间启用公平性约束

2. 特征漂移伪装:向审计方提供经过重采样的"清洁数据集"

3. 模型版本混淆:部署审计版与生产版双模型架构

对抗检测实验:

# 审计方使用的公平性检测工具
from aif360.sklearn.detectors import BiasDetectionScanner

scanner = BiasDetectionScanner(
    privileged_groups

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值