前沿AI算法理论与数学分析:从信息论到拓扑优化

前沿AI算法理论与数学分析:从信息论到拓扑优化

1. 变分自编码器(VAE)的信息论基础

变分推断的数学框架

变分自编码器基于变分贝叶斯推断,其核心思想是学习数据的潜在表示分布。

证据下界(ELBO)推导:

给定观测数据x和潜变量z,我们要最大化边际似然:

log p(x) = log ∫ p(x|z)p(z)dz

引入变分分布q(z|x),利用Jensen不等式:

log p(x) = log ∫ q(z|x) · p(x|z)p(z)/q(z|x) dz
         ≥ ∫ q(z|x) log[p(x|z)p(z)/q(z|x)] dz
         = 𝔼_{q(z|x)}[log p(x|z)] - KL[q(z|x)||p(z)]
         = ELBO(x)

KL散度的信息论解释:

KL[q||p] = 𝔼_q[log q(z|x) - log p(z)]
         = H_q(z) - H_{q,p}(z)

这里H_q(z)是熵,H_{q,p}(z)是交叉熵。

重参数化技巧的数学分析

原始问题: 对于随机变量z ~ q(z|x),计算梯度∇φ 𝔼{q(z|x)}[f(z)]是困难的。

重参数化变换:

z = μ(x) + σ(x) ⊙ ε, where ε ~ N(0,I)

梯度计算:

∇_φ 𝔼_{q(z|x)}[f(z)] = ∇_φ 𝔼_{p(ε)}[f(μ(x) + σ(x) ⊙ ε)]
                      = 𝔼_{p(ε)}[∇_φ f(μ(x) + σ(x) ⊙ ε)]

β-VAE的信息瓶颈理论

修改后的目标函数:

L = 𝔼_{q(z|x)}[log p(x|z)] - β·KL[q(z|x)||p(z)]

信息瓶颈原理: β参数控制了表示学习中的压缩-重构权衡:

  • β > 1:强制学习更压缩的表示
  • β < 1:优先考虑重构质量

互信息上界:

I(X;Z) ≤ 𝔼_x[KL[q(z|x)||p(z)]]

2. 生成对抗网络(GAN)的博弈论分析

纳什均衡的数学表征

GAN的零和博弈:

min_G max_D V(D,G) = 𝔼_{x~p_data}[log D(x)] + 𝔼_{z~p_z}[log(1-D(G(z)))]

纳什均衡条件: 在最优解处:

D*(x) = p_data(x)/(p_data(x) + p_g(x))

全局最优解的性质: 当p_g = p_data时,D* = 1/2,此时:

V(D*,G*) = -2log2

Wasserstein GAN的度量空间理论

Earth Mover距离定义:

W(p_r, p_g) = inf_{γ∈Π(p_r,p_g)} 𝔼_{(x,y)~γ}[||x-y||]

Kantorovich-Rubinstein对偶:

W(p_r, p_g) = sup_{||f||_L≤1} 𝔼_{x~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值