前沿AI算法理论与数学分析:从信息论到拓扑优化
1. 变分自编码器(VAE)的信息论基础
变分推断的数学框架
变分自编码器基于变分贝叶斯推断,其核心思想是学习数据的潜在表示分布。
证据下界(ELBO)推导:
给定观测数据x和潜变量z,我们要最大化边际似然:
log p(x) = log ∫ p(x|z)p(z)dz
引入变分分布q(z|x),利用Jensen不等式:
log p(x) = log ∫ q(z|x) · p(x|z)p(z)/q(z|x) dz
≥ ∫ q(z|x) log[p(x|z)p(z)/q(z|x)] dz
= 𝔼_{q(z|x)}[log p(x|z)] - KL[q(z|x)||p(z)]
= ELBO(x)
KL散度的信息论解释:
KL[q||p] = 𝔼_q[log q(z|x) - log p(z)]
= H_q(z) - H_{q,p}(z)
这里H_q(z)是熵,H_{q,p}(z)是交叉熵。
重参数化技巧的数学分析
原始问题: 对于随机变量z ~ q(z|x),计算梯度∇φ 𝔼{q(z|x)}[f(z)]是困难的。
重参数化变换:
z = μ(x) + σ(x) ⊙ ε, where ε ~ N(0,I)
梯度计算:
∇_φ 𝔼_{q(z|x)}[f(z)] = ∇_φ 𝔼_{p(ε)}[f(μ(x) + σ(x) ⊙ ε)]
= 𝔼_{p(ε)}[∇_φ f(μ(x) + σ(x) ⊙ ε)]
β-VAE的信息瓶颈理论
修改后的目标函数:
L = 𝔼_{q(z|x)}[log p(x|z)] - β·KL[q(z|x)||p(z)]
信息瓶颈原理: β参数控制了表示学习中的压缩-重构权衡:
- β > 1:强制学习更压缩的表示
- β < 1:优先考虑重构质量
互信息上界:
I(X;Z) ≤ 𝔼_x[KL[q(z|x)||p(z)]]
2. 生成对抗网络(GAN)的博弈论分析
纳什均衡的数学表征
GAN的零和博弈:
min_G max_D V(D,G) = 𝔼_{x~p_data}[log D(x)] + 𝔼_{z~p_z}[log(1-D(G(z)))]
纳什均衡条件: 在最优解处:
D*(x) = p_data(x)/(p_data(x) + p_g(x))
全局最优解的性质: 当p_g = p_data时,D* = 1/2,此时:
V(D*,G*) = -2log2
Wasserstein GAN的度量空间理论
Earth Mover距离定义:
W(p_r, p_g) = inf_{γ∈Π(p_r,p_g)} 𝔼_{(x,y)~γ}[||x-y||]
Kantorovich-Rubinstein对偶:
W(p_r, p_g) = sup_{||f||_L≤1} 𝔼_{x~