二叉树
15的父节点是16 ,16的左节点是15,17是16的右节点
每一个节点都包含父节点地址,值,左子节点地址,右子节点地址
像22没有父节点的地址就记作null,下面的像15等,没有子节点地址的也记为null
二叉树的特点
二叉树中,任意一个节点的度要小于等于2
- 度: 每一个节点的子节点数量称之为度
- 节点: 在树结构中,每一个元素称之为节点
度:像22 18,26等他们的子节点都有2个,但是在最下面15等 这样的就没有子节点,所以任意一个节点的度要小于等于2
树高: 如上图 树的高度为4
根节点: 最顶层的节点如22
左子节点如18
右子节点如26
二叉查找树
二叉查找树的特点
二叉查找树,又称二叉排序树或者二叉搜索树
每一个节点上最多有两个子节点
左子树上所有节点的值都小于根节点的值(当前节点)
右子树上所有节点的值都大于根节点的值(当前节点)
二叉查找树添加节点规则
小的存左边
大的存右边
一样的不存
举例
如图,查找5 拿5和7比一下 发现5比7小,就放在左边 ,发现5比4大,就把5放4右边,就查到了
前序遍历是按照当前节点的左子树(左子节点到右子节点来遍历)到右子树(同理)
先遍历左子树,再遍历跟节点,然后遍历右子树,其实左子树和右子树都是按照先左子节点-----根节点---右子节点顺序来的
平衡二叉树
平衡二叉树的特点
二叉树左右两个子树的高度差不超过1
任意节点的左右两个子树都是一颗平衡二叉树
如图 10没有左子节点,右子节点的高度是3,所以不是平衡二叉树
10为不平衡节点作为支点,然后开始左旋, 把支点左旋降级,变成左子节点,晋升原来的右子节点,如下图
找到不平衡节点7作为支点,然后左旋 原来的右子节10点变成了新的父节点,多余的左子节点9给7当右子节点了
找到不平衡节点 4作为支点,作为然后开始右旋,把4支点右旋降级,变成了2的右子节点,晋升了原来的左子节点2
不平衡
先左旋 再右旋