题目描述
在通讯领域,经常需要将需要传送的文字转换成由二进制字符组成的字符串。在实际应用中,由于总是希望被传送的内容总长尽可能的短,如果对每个字符设计长度不等的编码,且让内容中出现次数较多的字符采用尽可能短的编码,则整个内容的总长便可以减少。另外,需要保证任何一个字符的编码都不是另一个字符的编码前缀,这种编码成为前缀编码。
而赫夫曼编码就是一种二进制前缀编码,其从叶子到根(自底向上)逆向求出每个字符的算法可以表示如下:
在本题中,读入n个字符所对应的权值,生成赫夫曼编码,并依次输出计算出的每一个赫夫曼编码。
输入格式
输入的第一行包含一个正整数n,表示共有n个字符需要编码。其中n不超过100。 第二行中有n个用空格隔开的正整数,分别表示n个字符的权值。
输出格式
共n行,每行一个字符串,表示对应字符的赫夫曼编码。
输入样例
8
5 29 7 8 14 23 3 11
输出样例
0110
10
1110
1111
110
00
0111
010
数据范围与提示
满足条件的哈夫曼树不止一种。为了确保答案唯一,题目的测试数据约定,合并两个节点时,先出现的节点(也就是数组中下标小的节点)为左子;
代码展示
#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=110;
struct HuffNode{
int weight;
int parent,lchild,rchild;
}node[maxn*2];
void SearchMin(int &a,int &b,int n){
int min=INT_MAX;
for(int i=1;i<=n;++i){
if(node[i].parent==0&&node[i].weight<min){
min=node[i].weight;
a=i;
}
}
min=INT_MAX;
for(int i=1;i<=n;++i){
if(node[i].parent==0&&node[i].weight<min&&i!=a){
min=node[i].weight;
b=i;
}
}
if(a>b){
swap(a,b);
}
}
void HuffmanCode(int n,int *w,char **&ans){
int m=2*n-1;
for(int i=1;i<=n;++i){
node[i].parent=node[i].lchild=node[i].rchild=0;
node[i].weight=w[i];
}
for(int i=n+1;i<=m;++i){
int a,b;
SearchMin(a,b,i-1);
node[i].lchild=a;
node[i].rchild=b;
node[i].weight=node[a].weight+node[b].weight;
node[i].parent=0;
node[a].parent=node[b].parent=i;
}
int c,f,index=0;
char temp[n];
ans=new char *[n+1];
for(int i=1;i<=m;++i)
node[i].weight=0;
while(m){
if(node[m].weight==0){
node[m].weight=1;
if(node[m].lchild!=0){
m=node[m].lchild;
temp[index++]='0';
}
else if(node[m].rchild==0){
ans[m]=new char[index+1];
temp[index]='\0';
strcpy(ans[m],temp);
}
}
else if(node[m].weight==1){
node[m].weight=2;
if(node[m].rchild!=0){
m=node[m].rchild;
temp[index++]='1';
}
}
else{
node[m].weight=0;
m=node[m].parent;
--index;
}
}
}
int main(){
//freopen("/config/workspace/test/test","r",stdin);
int n,weight[maxn];
char **ans;
cin>>n;
for(int i=1;i<=n;++i){
cin>>weight[i];
}
HuffmanCode(n,weight,ans);
for(int i=1;i<=n;++i){
cout<<ans[i]<<endl;
}
delete ans;
return 0;
}