使用逐步逼近法对给定数值x求开根号。
逐步逼近法说明:从0开始逐步累加步长值。
步长=0.0001,epsilon(误差)=0.0001
循环继续的条件:
平方值<x
且 |x-平方值| > epsilon
###说明与参考
- 数值输出保留6位小数,使用System.out.printf("%.6f\n")
- 求平方,参考Math.pow函数。
- 输入值<0时,返回Double.NaN
输入格式:
任意数值
输出格式:
对每一组输入,在一行中输出其开根号。保留6位小数
输入样例:
-1
0
0.5
0.36
1
6
100
131
输出样例:
NaN
0.000000
0.707100
0.600000
1.000000
2.449500
10.000000
11.445600
代码展示
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
final double epsilon = 0.0001;
final double step = 0.0001;
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
double x = sc.nextDouble();
double a = 0;
if (x < 0) {
System.out.println(Double.NaN);
continue;
}
else{
while ((a * a < x) && (Math.abs(a * a - x) > epsilon)) {
a += step;
}
System.out.printf("%.6f\n", a);
}
}
}
}