目录
一、有效三角形的个数
1.题目链接:611.有效三角形的个数
2.题目描述:
给定一个包含非负整数的数组
nums
,返回其中可以组成三角形三条边的三元组个数。示例 1:
输入: nums = [2,2,3,4] 输出: 3 解释:有效的组合是: 2,3,4 (使用第一个 2) 2,3,4 (使用第二个 2) 2,2,3示例 2:
输入: nums = [4,2,3,4] 输出: 4
3.解法一(暴力求解、会超时)
🌵算法思路:
三层 for 循环枚举出所有的三元组,并且判断是否能构成三角形。
虽然说是暴力求解,但是还是想优化一下:
判断三角形的优化:
- 如果能构成三角形,需要满足任意两边之和要大于第三边。但是实际上只需让较小的两条边之和大于第三边即可。
- 因此我们可以先将原数组排序,然后从小到大枚举三元组,一方面省去枚举的数量,另一方面方便判断是否能构成三角形。
🌵算法代码:
class Solution
{
public:
int triangleNumber(vector<int>& nums)
{
// 1. 排序
sort(nums.begin(), nums.end());
int ret = 0, n = nums.size();
// 2. 从⼩到⼤枚举所有的三元组
for(int i = 0; i < n; i++)
{
for(int j = i + 1; j < n; j++)
{
for(int k = j + 1; k < n; k++)
{
// 当最⼩的两个边之和⼤于第三边的时候,统计答案
if(nums[i] + nums[j] > nums[k])
{
ret++;
}
}
}
}
return ret;
}
};
4.解法二(排序 + 双指针)
🌵算法思路:
先将数组排序。
根据「解法一」中的优化思想,我们可以固定一个「最长边」,然后在比这条边小的有序数组中找出一个二元组,使这个二元组之和大于这个最长边。由于数组是有序的,我们可以利用「对撞指针」来优化。
设最长边枚举到 i 位置,区间 [left, right] 是 i 位置左边的区间(也就是比它小的区间):
如果 nums[left] + nums[right] > nums[i] :
- 说明 [left, right - 1] 区间上的所有元素均可以与 nums[right] 构成比nums[i] 大的二元组。
- 满足条件的有 right - left 种。
- 此时 right 位置的元素的所有情况相当于全部考虑完毕, right-- ,进入下一轮判断。
如果 nums[left] + nums[right] <= nums[i] :
- 说明 left 位置的元素是不可能与 [left + 1, right] 位置上的元素构成满足条件的二元组。
- left 位置的元素可以舍去, left++ 进入下轮循环。
🌵算法代码:
class Solution
{
public:
int triangleNumber(vector<int>& nums)
{
// 优化
sort(nums.begin(), nums.end());
// 利用双指针解决问题
int ret = 0, n = nums.size();
for (int i = n - 1; i >= 2; i--)// 先固定最大的数
{
// 利⽤双指针快速统计符合要求的三元组的个数
int left = 0, right = i - 1;
while (left < right)
{
if (nums[left] + nums[right] > nums[i])
{
ret += right - left;
right--;
}
else
{
left++;
}
}
}
return ret;
}
};
二、和为 S 的两个数
1.题目链接:179.查找总价值为目标值的两个商品
2.题目描述:
购物车内的商品价格按照升序记录于数组
price
。请在购物车中找到两个商品的价格总和刚好是target
。若存在多种情况,返回任一结果即可。示例 1:
输入:price = [3, 9, 12, 15], target = 18 输出:[3,15] 或者 [15,3]示例 2:
输入:price = [8, 21, 27, 34, 52, 66], target = 61 输出:[27,34] 或者 [34,27]
3.解法一(暴力解法、会超时)
🍀算法思路:
两层 for 循环列出所有两个数字的组合,判断是否等于目标值。
🍀算法流程:
两层 for 循环:
- 外层 for 循环依次枚举第一个数 a ;
- 内层 for 循环依次枚举第二个数 b ,让它与 a 匹配;
- ps :这里有个魔鬼细节:我们挑选第二个数的时候,可以不从第一个数开始选,因为 a 前面的数我们都已经在之前考虑过了;因此,我们可以从 a 往后的数开始列举。
- 然后将挑选的两个数相加,判断是否符合目标值。
🍀算法代码:
class Solution
{
public:
vector<int> twoSum(vector<int>& nums, int target)
{
int n = nums.size();
// 第⼀层循环从前往后列举第⼀个数
for (int i = 0; i < n; i++)
{
// 第⼆层循环从 i 位置之后列举第⼆个数
for (int j = i + 1; j < n;j++)
{
if (nums[i] + nums[j] == target)
return {nums[i], nums[j]};
}
}
return {-1, -1};
}
};
4.解法二(双指针 - 对撞指针)
🍀算法思路:
注意到本题是升序的数组,因此可以「用对撞指针」优化时间复杂度。
🍀算法流程:
a. 初始化 left , right 分别指向数组的左右两端(这里不是我们理解的指针,而是数组的下标)。
b. 当 left < right 的时候,一直循环。
i. 当 nums[left] + nums[right] == target 时,说明找到结果,记录结果,并且返回;
ii. 当 nums[left] + nums[right] < target 时:
- 对于 nums[left] 而言,此时 nums[right] 相当于是 nums[left] 能碰到的最大值(别忘了,这里是升序数组哈~)。如果此时不符合要求,说明在这个数组里面,没有别的数符合 nums[left] 的要求了(最大的数都满足不了你,你已经没救了)。因此,我们可以大胆舍去这个数,让 left++ ,去比较下一组数据;
- 那对于 nums[right] 而言,由于此时两数之和是小于目标值的, nums[right]还可以选择比 nums[left] 大的值继续努力达到目标值,因此 right 指针我们按兵不动;
iii. 当 nums[left] + nums[right] > target 时,同理我们可以舍去 nums[right] (最小的数都满足不了你,你也没救了)。让 right-- ,继续比较下一组数据,而 left 指针不变(因为他还是可以去匹配比 nums[right] 更小的数的)。
🍀算法代码:
class Solution {
public:
vector<int> twoSum(vector<int>& price, int target) {
int left = 0, right = price.size() - 1;
while(left < right)
{
int sum = price[left] + price[right];
if(sum > target)
right--;
else if(sum < target)
left++;
else
return {price[left], price[right]};
}
return {-1, -1};
}
};
三、三数之和
1.题目链接:15.三数之和
2.题目描述:
给你一个整数数组
nums
,判断是否存在三元组[nums[i], nums[j], nums[k]]
满足i != j
、i != k
且j != k
,同时还满足nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为0
且不重复的三元组。注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
3.解法(排序 + 双指针)
🍁算法思路:
本题与两数之和类似,是非常经典的面试题。
与两数之和稍微不同的是,题目中要求找到所有「不重复」的三元组。那我们可以利用在两数之和那里用的双指针思想,来对我们的暴力枚举做优化:
- 先排序;
- 然后固定一个数 a :
- 在这个数后面的区间内,使用「双指针算法」快速找到两个数之和等于 -a 即可。
但是要注意的是,这道题里面需要有「去重」操作~
- 找到一个结果之后, left 和 right 指针要「跳过重复」的元素;
- 当使用完一次双指针算法之后,固定的 a 也要「跳过重复」的元素。
🍁算法代码:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ret;
// 1.排序
sort(nums.begin(), nums.end());
// 2.利用双指针解决问题
int n = nums.size();
for(int i = 0; i < n; )// 固定数
{
// 如果数i大于0,那他的相反数肯定为负数,负数再取相反数则为正数,
// 相加肯定不为0,所以直接跳出循环
if(nums[i] > 0)
break;
int left = i + 1, right = n - 1, target = -nums[i];
while(left < right)
{
int sum = nums[left] + nums[right];
if(sum > target)
right--;
else if(sum < target)
left++;
else
{
ret.push_back({nums[i], nums[left], nums[right]});
left++, right--;
// 去重操作
while(left < right && nums[left] == nums[left - 1])
{
left++;
}
while(left < right && nums[right] == nums[right + 1])
{
right--;
}
}
}
// 去重 i
i++;
while(i < n && nums[i] == nums[i - 1])
{
i++;
}
}
return ret;
}
};
四、四数之和
1.题目链接:18.四数之和
2.题目描述:
给你一个由
n
个整数组成的数组nums
,和一个目标值target
。请你找出并返回满足下述全部条件且不重复的四元组[nums[a], nums[b], nums[c], nums[d]]
(若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a
、b
、c
和d
互不相同nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0 输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]示例 2:
输入:nums = [2,2,2,2,2], target = 8 输出:[[2,2,2,2]]
3.解法(排序 + 双指针)
🌾算法思路:
- 依次固定一个数 a ;
- 在这个数 a 的后面区间上,利用「三数之和」找到三个数,使这三个数的和等于 target - a 即可。
🌾算法代码:
class Solution
{
public:
vector<vector<int>> fourSum(vector<int>& nums, int target)
{
vector<vector<int>> ret;
// 1.排序
sort(nums.begin(), nums.end());
// 2.利用双指针解决问题
int n = nums.size();
for(int i = 0; i < n; ) // 固定第一个数
{
// 利用三数之和解法
for(int j = i + 1; j < n; )// 固定第二个数
{
int left = j + 1, right = n - 1;
long long aim = (long long)target - nums[i] - nums[j];
// 双指针解法
while(left < right)
{
int sum = nums[left] + nums[right];
if(sum > aim)
right--;
else if(sum < aim)
left++;
else
{
ret.push_back({nums[i], nums[j], nums[left], nums[right]});
left++, right--;
// 去重left 和 right
while(left < right && nums[left] == nums[left - 1]) left++;
while(left < right && nums[right] == nums[right + 1]) right--;
}
}
// 去重 j
j++;
while(j < n && nums[j] == nums[j - 1]) j++;
}
// 去重 i
i++;
while(i < n && nums[i] == nums[i - 1]) i++;
}
return ret;
}
};