哈夫曼树的带权路径长度总结wpl

本文介绍了两种方法来构建哈夫曼树并计算其带权路径长度。方法一是通过排序和合并最小权重节点,直至构建完整棵树;方法二是利用小根堆,每次弹出两个最小值并插入它们的和。最后,通过计算各权值乘以其减一的深度得到路径长度。代码示例展示了使用C++实现的小根堆方法。
摘要由CSDN通过智能技术生成

//哈夫曼树的带权路径长度
//总结
//法一:①先对权值从小到大排序。
//②选两个最小的加起来成为一个新结点,而这两个最小的值是新结点的左右子结点。
//③两个老的结点去掉,新的结点放入再次排序然后重复过程②。
//④直到完全生成一棵树。
//⑤计算的时候,只计算那些初始权值里面有的值,把它乘以深度
//(和传统说的深度不一样,是传统说的深度减一)加起来就是路径长度。

//法二:哈夫曼树也可以通过小根堆实现。小根堆每次弹出两个值,然后将二者的和再插入小根堆中。 

//vs2017
//哈夫曼树的带权路径长度
//总结
//法一:①先对权值从小到大排序。
//②选两个最小的加起来成为一个新结点,而这两个最小的值是新结点的左右子结点。
//③两个老的结点去掉,新的结点放入再次排序然后重复过程②。
//④直到完全生成一棵树。
//⑤计算的时候,只计算那些初始权值里面有的值,把它乘以深度
//(和传统说的深度不一样,是传统说的深度减一)加起来就是路径长度。

//法二:哈夫曼树也可以通过小根堆实现。小根堆每次弹出两个值,然后将二者的和再插入小根堆中。
#include <iostream>
#include<stdio.h>
#include<vector>
#include<queue>
using namespace std;
int main()
{
    int n;
    while (cin >> n)
    {
        priority_queue<int, vector<int>, greater<int>> pq;//定义小根堆pq
        int num;
        for (int i = 0; i < n; i++)
        {
            cin >> num;
            pq.push(num);
        }
        int sum = 0;
        while (pq.size() > 1)//除了哈夫曼树最顶部元素,其他所有元素累加即为wpl
        {
            int num1 = pq.top();
            pq.pop();
            int num2 = pq.top();
            pq.pop();
            sum += (num1 + num2);
            pq.push(num1 + num2);
        }
        cout << sum << endl;
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值